/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | foam-extend: Open Source CFD \\ / O peration | Version: 4.0 \\ / A nd | Web: http://www.foam-extend.org \\/ M anipulation | For copyright notice see file Copyright ------------------------------------------------------------------------------- License This file is part of foam-extend. foam-extend is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. foam-extend is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with foam-extend. If not, see . Application steadyCompressibleFoam Description Steady-state solver for compressible, turbulent flow, with solution performed using rotating frame of reference. Author Hrvoje Jasak, Wikki Ltd. All rights reserved. \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "basicPsiThermo.H" #include "RASModel.H" #include "SRFModel.H" #include "pimpleControl.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" pimpleControl pimple(mesh); # include "createFields.H" # include "initContinuityErrs.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info<< "\nStarting time loop\n" << endl; while (runTime.loop()) { Info<< "Time = " << runTime.timeName() << nl << endl; # include "readFieldBounds.H" # include "UEqn.H" # include "pEqn.H" // # include "hEqn.H" // Solving for rothalpy # include "iEqn.H" # include "rhoFromP.H" // Correct turbulence turbulence->correct(); // Update rotational velocity Urot = SRF->U(); // Update absolute velocity Uabs = Urel + Urot; runTime.write(); Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << nl << endl; } Info<< "End\n" << endl; return(0); } // ************************************************************************* //