/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | foam-extend: Open Source CFD \\ / O peration | Version: 3.2 \\ / A nd | Web: http://www.foam-extend.org \\/ M anipulation | For copyright notice see file Copyright ------------------------------------------------------------------------------- License This file is part of foam-extend. foam-extend is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. foam-extend is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with foam-extend. If not, see . Application elasticNonLinTLSolidFoam Description Finite volume structural solver employing a total strain total Lagrangian approach. Valid for finite strains, finite displacements and finite rotations. Author Micheal Leonard Philip Cardiff \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "constitutiveModel.H" #include "solidInterface.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" # include "createFields.H" # include "createSolidInterfaceNonLin.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info<< "\nStarting time loop\n" << endl; while(runTime.loop()) { Info<< "Time = " << runTime.timeName() << nl << endl; # include "readSolidMechanicsControls.H" int iCorr = 0; scalar initialResidual = 0; lduMatrix::solverPerformance solverPerf; scalar relativeResidual = 1.0; lduMatrix::debug = 0; do { U.storePrevIter(); surfaceTensorField shearGradU ( "shearGradU", (I - sqr(n)) & fvc::interpolate(gradU) ); fvVectorMatrix UEqn ( fvm::d2dt2(rho, U) == fvm::laplacian(2*muf + lambdaf, U, "laplacian(DU,U)") // + fvc::div // ( // -(mu + lambda)*gradU // + mu*gradU.T() // + mu*(gradU & gradU.T()) // + lambda*tr(gradU)*I // + 0.5*lambda*tr(gradU & gradU.T())*I // + (sigma & gradU), // "div(sigma)" // ) + fvc::div ( mesh.magSf()* ( - (muf + lambdaf)*(fvc::snGrad(U) & (I - n*n)) + lambdaf*tr(shearGradU & (I - n*n))*n + muf*(shearGradU & n) + muf*(n & fvc::interpolate(gradU & gradU.T())) + 0.5*lambdaf*(n*tr(fvc::interpolate(gradU & gradU.T()))) + (n & fvc::interpolate(sigma & gradU)) ) ) ); if (solidInterfaceCorr) { solidInterfacePtr->correct(UEqn); } solverPerf = UEqn.solve(); if (iCorr == 0) { initialResidual = solverPerf.initialResidual(); } U.relax(); //gradU = solidInterfacePtr->grad(U); gradU = fvc::grad(U); # include "calculateEpsilonSigma.H" # include "calculateRelativeResidual.H" Info<< "\tTime " << runTime.value() << ", Corrector " << iCorr << ", Solving for " << U.name() << " using " << solverPerf.solverName() << ", residual = " << solverPerf.initialResidual() << ", relative residual = " << relativeResidual << ", inner iterations " << solverPerf.nIterations() << endl; } while ( solverPerf.initialResidual() > convergenceTolerance //relativeResidual > convergenceTolerance && ++iCorr < nCorr ); Info<< nl << "Time " << runTime.value() << ", Solving for " << U.name() << ", Initial residual = " << initialResidual << ", Final residual = " << solverPerf.initialResidual() << ", Relative residual = " << relativeResidual << ", No outer iterations " << iCorr << nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << endl; # include "writeFields.H" Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << endl; } Info<< "End\n" << endl; return(0); } // ************************************************************************* //