/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 2004-2007 Hrvoje Jasak \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Application elasticNonLinIncrTLSolidFoam Description Finite volume structural solver employing an incremental strain total Lagrangian approach. For elastic solids. Valid for finite strains, finite displacements and finite rotations. Author Philip Cardiff UCD Micheal Leonard UCD \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "constitutiveModel.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" # include "createFields.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info<< "\nStarting time loop\n" << endl; while(runTime.loop()) { Info<< "Time: " << runTime.timeName() << nl << endl; # include "readSolidMechanicsControls.H" int iCorr = 0; scalar initialResidual = 0; lduMatrix::solverPerformance solverPerf; scalar relativeResidual = 1.0; lduMatrix::debug=0; do { DU.storePrevIter(); fvVectorMatrix DUEqn ( fvm::d2dt2(rho, DU) == fvm::laplacian(2*mu + lambda, DU, "laplacian(DDU,DU)") + fvc::div( -( (mu + lambda) * gradDU ) + ( mu * ( gradDU.T() + (gradDU & gradU.T()) + (gradU & gradDU.T()) + (gradDU & gradDU.T()) ) ) + ( lambda * tr(DEpsilon) * I ) + ( DSigma & gradU ) + ( (sigma + DSigma) & gradDU ), "div(sigma)" ) ); solverPerf = DUEqn.solve(); if(iCorr == 0) { initialResidual = solverPerf.initialResidual(); } DU.relax(); gradDU = fvc::grad(DU); # include "calculateDEpsilonDSigma.H" # include "calculateRelativeResidual.H" Info << "\tTime " << runTime.value() << ", Corrector " << iCorr << ", Solving for " << DU.name() << " using " << solverPerf.solverName() << ", residual = " << solverPerf.initialResidual() << ", relative residual = " << relativeResidual << ", inner iterations = " << solverPerf.nIterations() << endl; } while ( solverPerf.initialResidual() > convergenceTolerance //relativeResidual > convergenceTolerance && ++iCorr < nCorr ); Info << nl << "Time " << runTime.value() << ", Solving for " << DU.name() << ", Initial residual = " << initialResidual << ", Final residual = " << solverPerf.initialResidual() << ", Relative residual = " << relativeResidual << ", No outer iterations " << iCorr << nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << endl; U += DU; gradU += gradDU; epsilon += DEpsilon; sigma += DSigma; # include "writeFields.H" Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s\n\n" << endl; } Info<< "End\n" << endl; return(0); } // ************************************************************************* //