/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 2004-2007 Hrvoje Jasak \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Application elasticIncrAcpSolidFoam Description Incremental form of elasticAcpSolidFoam arbitrary crack propagation solver Author Zeljko Tukovic, FSB Zagreb Declan Carolan UCD Philip Cardiff UCD \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "constitutiveModel.H" //#include "componentReferenceList.H" #include "crackerFvMesh.H" #include "processorPolyPatch.H" #include "SortableList.H" #include "solidInterface.H" #include "solidCohesiveFvPatchVectorField.H" #include "solidCohesiveFixedModeMixFvPatchVectorField.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createCrackerMesh.H" # include "createFields.H" # include "createCrack.H" //# include "createReference.H" # include "createHistory.H" # include "readDivDSigmaExpMethod.H" # include "createSolidInterfaceIncrNoModify.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info<< "\nStarting time loop\n" << endl; lduMatrix::debug = 0; scalar maxEffTractionFraction = 0; while (runTime.run()) { # include "readSolidMechanicsControls.H" # include "setDeltaT.H" runTime++; Info<< "\nTime: " << runTime.timeName() << " s\n" << endl; volScalarField rho = rheology.rho(); volScalarField mu = rheology.mu(); volScalarField lambda = rheology.lambda(); surfaceScalarField muf = fvc::interpolate(mu); surfaceScalarField lambdaf = fvc::interpolate(lambda); solidInterfacePtr->modifyProperties(muf, lambdaf); //# include "waveCourantNo.H" int iCorr = 0; lduMatrix::solverPerformance solverPerf; scalar initialResidual = 0; scalar relativeResidual = 1; //scalar forceResidual = 1; label nFacesToBreak = 0; label nCoupledFacesToBreak = 0; bool topoChange = false; // DU from the previous timestep is usually a good guess // for the next timestep, but it can cause faces to prematurely // crack. // so I will reduce DU here to stop this happening if(!predictor) { DU *= 0.0; } do { surfaceVectorField n = mesh.Sf()/mesh.magSf(); do { DU.storePrevIter(); # include "calculateDivDSigmaExp.H" fvVectorMatrix DUEqn ( rho*fvm::d2dt2(DU) == fvm::laplacian(2*muf + lambdaf, DU, "laplacian(DDU,DU)") + divDSigmaExp ); //# include "setReference.H" solidInterfacePtr->correct(DUEqn); //DUEqn.relax(); solverPerf = DUEqn.solve(); if(aitkenRelax) { # include "aitkenRelaxation.H" } else { DU.relax(); } if(iCorr == 0) { initialResidual = solverPerf.initialResidual(); aitkenInitialRes = gMax(mag(DU.internalField())); } //gradDU = solidInterfacePtr->grad(DU); gradDU = fvc::grad(DU); // use leastSquaresSolidInterface grad scheme # include "calculateRelativeResidual.H" if(iCorr % infoFrequency == 0) { Info << "\tTime " << runTime.value() << ", Corr " << iCorr << ", Solving for " << DU.name() << " using " << solverPerf.solverName() << ", res = " << solverPerf.initialResidual() << ", rel res = " << relativeResidual; if(aitkenRelax) Info << ", aitken = " << aitkenTheta; Info << ", inner iters " << solverPerf.nIterations() << endl; } } while ( //iCorr++ == 0 iCorr++ < 10 || ( //solverPerf.initialResidual() > convergenceTolerance relativeResidual > convergenceTolerance && iCorr < nCorr ) ); Info << "Solving for " << DU.name() << " using " << solverPerf.solverName() << ", Initial residual = " << initialResidual << ", Final residual = " << solverPerf.initialResidual() << ", No outer iterations " << iCorr << ", Relative residual " << relativeResidual << endl; # include "calculateTraction.H" # include "updateCrack.H" Info << "Max effective traction fraction: " << maxEffTractionFraction << endl; // reset counter if faces want to crack if((nFacesToBreak > 0) || (nCoupledFacesToBreak > 0)) iCorr = 0; } while( (nFacesToBreak > 0) || (nCoupledFacesToBreak > 0)); if(cohesivePatchDUPtr) { if(returnReduce(cohesivePatchDUPtr->size(), sumOp