/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | foam-extend: Open Source CFD \\ / O peration | \\ / A nd | For copyright notice see file Copyright \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of foam-extend. foam-extend is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. foam-extend is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with foam-extend. If not, see . Global execFlowFunctionObjects Description Execute the set of functionObjects specified in the selected dictionary (which defaults to system/controlDict) for the selected set of times. The flow (p-U) and optionally turbulence fields are available for the function objects to operate on allowing forces and other related properties to be calculated in addition to cutting planes etc. \*---------------------------------------------------------------------------*/ #include "calc.H" #include "incompressible/singlePhaseTransportModel/singlePhaseTransportModel.H" #include "incompressible/RAS/RASModel/RASModel.H" #include "incompressible/LES/LESModel/LESModel.H" #include "basicPsiThermo.H" #include "compressible/RAS/RASModel/RASModel.H" #include "compressible/LES/LESModel/LESModel.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // namespace Foam { void execFlowFunctionObjects(const argList& args, const Time& runTime) { if (args.optionFound("dict")) { IOdictionary dict ( IOobject ( args.option("dict"), runTime.system(), runTime, IOobject::MUST_READ ) ); functionObjectList fol(runTime, dict); fol.start(); fol.execute(); } else { functionObjectList fol(runTime); fol.start(); fol.execute(); } } } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // void Foam::calc(const argList& args, const Time& runTime, const fvMesh& mesh) { Info<< " Reading phi" << endl; surfaceScalarField phi ( IOobject ( "phi", runTime.timeName(), mesh, IOobject::MUST_READ ), mesh ); Info<< " Reading U" << endl; volVectorField U ( IOobject ( "U", runTime.timeName(), mesh, IOobject::MUST_READ ), mesh ); Info<< " Reading p" << endl; volScalarField p ( IOobject ( "p", runTime.timeName(), mesh, IOobject::MUST_READ ), mesh ); if (phi.dimensions() == dimensionSet(0, 3, -1, 0, 0)) { IOobject RASPropertiesHeader ( "RASProperties", runTime.constant(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE, false ); IOobject LESPropertiesHeader ( "LESProperties", runTime.constant(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE, false ); singlePhaseTransportModel laminarTransport(U, phi); if (RASPropertiesHeader.headerOk()) { IOdictionary RASProperties(RASPropertiesHeader); autoPtr RASModel ( incompressible::RASModel::New ( U, phi, laminarTransport ) ); execFlowFunctionObjects(args, runTime); } else if (LESPropertiesHeader.headerOk()) { IOdictionary LESProperties(LESPropertiesHeader); autoPtr sgsModel ( incompressible::LESModel::New(U, phi, laminarTransport) ); execFlowFunctionObjects(args, runTime); } else { IOdictionary transportProperties ( IOobject ( "transportProperties", runTime.constant(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE ) ); dimensionedScalar nu(transportProperties.lookup("nu")); execFlowFunctionObjects(args, runTime); } } else if (phi.dimensions() == dimensionSet(1, 0, -1, 0, 0)) { autoPtr thermo(basicPsiThermo::New(mesh)); volScalarField rho ( IOobject ( "rho", runTime.timeName(), mesh ), thermo->rho() ); IOobject RASPropertiesHeader ( "RASProperties", runTime.constant(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE, false ); IOobject LESPropertiesHeader ( "LESProperties", runTime.constant(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE, false ); if (RASPropertiesHeader.headerOk()) { IOdictionary RASProperties(RASPropertiesHeader); autoPtr RASModel ( compressible::RASModel::New ( rho, U, phi, thermo() ) ); execFlowFunctionObjects(args, runTime); } else if (LESPropertiesHeader.headerOk()) { IOdictionary LESProperties(LESPropertiesHeader); autoPtr sgsModel ( compressible::LESModel::New(rho, U, phi, thermo()) ); execFlowFunctionObjects(args, runTime); } else { IOdictionary transportProperties ( IOobject ( "transportProperties", runTime.constant(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE ) ); dimensionedScalar mu(transportProperties.lookup("mu")); execFlowFunctionObjects(args, runTime); } } else { FatalErrorIn(args.executable()) << "Incorrect dimensions of phi: " << phi.dimensions() << nl << exit(FatalError); } } // ************************************************************************* //