/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | foam-extend: Open Source CFD \\ / O peration | \\ / A nd | For copyright notice see file Copyright \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of foam-extend. foam-extend is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. foam-extend is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with foam-extend. If not, see . Application Pe Description Calculates and writes the Pe number as a surfaceScalarField obtained from field phi. The -noWrite option just outputs the max/min values without writing the field. \*---------------------------------------------------------------------------*/ #include "calc.H" #include "fvc.H" #include "incompressible/singlePhaseTransportModel/singlePhaseTransportModel.H" #include "incompressible/RAS/RASModel/RASModel.H" #include "incompressible/LES/LESModel/LESModel.H" #include "basicPsiThermo.H" #include "compressible/RAS/RASModel/RASModel.H" #include "compressible/LES/LESModel/LESModel.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // void Foam::calc(const argList& args, const Time& runTime, const fvMesh& mesh) { bool writeResults = !args.optionFound("noWrite"); IOobject phiHeader ( "phi", runTime.timeName(), mesh, IOobject::MUST_READ ); if (phiHeader.headerOk()) { autoPtr PePtr; Info<< " Reading phi" << endl; surfaceScalarField phi(phiHeader, mesh); volVectorField U ( IOobject ( "U", runTime.timeName(), mesh, IOobject::MUST_READ ), mesh ); IOobject RASPropertiesHeader ( "RASProperties", runTime.constant(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE ); IOobject LESPropertiesHeader ( "LESProperties", runTime.constant(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE ); Info<< " Calculating Pe" << endl; if (phi.dimensions() == dimensionSet(0, 3, -1, 0, 0)) { if (RASPropertiesHeader.headerOk()) { IOdictionary RASProperties(RASPropertiesHeader); singlePhaseTransportModel laminarTransport(U, phi); autoPtr RASModel ( incompressible::RASModel::New ( U, phi, laminarTransport ) ); PePtr.set ( new surfaceScalarField ( IOobject ( "Pe", runTime.timeName(), mesh, IOobject::NO_READ ), mag(phi) /( mesh.magSf() * mesh.surfaceInterpolation::deltaCoeffs() * fvc::interpolate(RASModel->nuEff()) ) ) ); } else if (LESPropertiesHeader.headerOk()) { IOdictionary LESProperties(LESPropertiesHeader); singlePhaseTransportModel laminarTransport(U, phi); autoPtr sgsModel ( incompressible::LESModel::New(U, phi, laminarTransport) ); PePtr.set ( new surfaceScalarField ( IOobject ( "Pe", runTime.timeName(), mesh, IOobject::NO_READ ), mag(phi) /( mesh.magSf() * mesh.surfaceInterpolation::deltaCoeffs() * fvc::interpolate(sgsModel->nuEff()) ) ) ); } else { IOdictionary transportProperties ( IOobject ( "transportProperties", runTime.constant(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE ) ); dimensionedScalar nu(transportProperties.lookup("nu")); PePtr.set ( new surfaceScalarField ( IOobject ( "Pe", runTime.timeName(), mesh, IOobject::NO_READ ), mesh.surfaceInterpolation::deltaCoeffs() * (mag(phi)/mesh.magSf())*(runTime.deltaT()/nu) ) ); } } else if (phi.dimensions() == dimensionSet(1, 0, -1, 0, 0)) { if (RASPropertiesHeader.headerOk()) { IOdictionary RASProperties(RASPropertiesHeader); autoPtr thermo(basicPsiThermo::New(mesh)); volScalarField rho ( IOobject ( "rho", runTime.timeName(), mesh ), thermo->rho() ); autoPtr RASModel ( compressible::RASModel::New ( rho, U, phi, thermo() ) ); PePtr.set ( new surfaceScalarField ( IOobject ( "Pe", runTime.timeName(), mesh, IOobject::NO_READ ), mag(phi) /( mesh.magSf() * mesh.surfaceInterpolation::deltaCoeffs() * fvc::interpolate(RASModel->muEff()) ) ) ); } else if (LESPropertiesHeader.headerOk()) { IOdictionary LESProperties(LESPropertiesHeader); autoPtr thermo(basicPsiThermo::New(mesh)); volScalarField rho ( IOobject ( "rho", runTime.timeName(), mesh ), thermo->rho() ); autoPtr sgsModel ( compressible::LESModel::New(rho, U, phi, thermo()) ); PePtr.set ( new surfaceScalarField ( IOobject ( "Pe", runTime.timeName(), mesh, IOobject::NO_READ ), mag(phi) /( mesh.magSf() * mesh.surfaceInterpolation::deltaCoeffs() * fvc::interpolate(sgsModel->muEff()) ) ) ); } else { IOdictionary transportProperties ( IOobject ( "transportProperties", runTime.constant(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE ) ); dimensionedScalar mu(transportProperties.lookup("mu")); PePtr.set ( new surfaceScalarField ( IOobject ( "Pe", runTime.timeName(), mesh, IOobject::NO_READ ), mesh.surfaceInterpolation::deltaCoeffs() * (mag(phi)/(mesh.magSf()))*(runTime.deltaT()/mu) ) ); } } else { FatalErrorIn(args.executable()) << "Incorrect dimensions of phi: " << phi.dimensions() << abort(FatalError); } // can also check how many cells exceed a particular Pe limit /* { label count = 0; label PeLimit = 200; forAll(PePtr(), i) { if (PePtr()[i] > PeLimit) { count++; } } Info<< "Fraction > " << PeLimit << " = " << scalar(count)/Pe.size() << endl; } */ Info << "Pe max : " << max(PePtr()).value() << endl; if (writeResults) { PePtr().write(); } } else { Info<< " No phi" << endl; } Info<< "\nEnd\n" << endl; } // ************************************************************************* //