/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | foam-extend: Open Source CFD \\ / O peration | Version: 4.1 \\ / A nd | Web: http://www.foam-extend.org \\/ M anipulation | For copyright notice see file Copyright ------------------------------------------------------------------------------- License This file is part of foam-extend. foam-extend is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. foam-extend is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with foam-extend. If not, see . Application elasticOrthoSolidFoam Description Transient/steady-state segregated finite-volume solver for small strain elastic orthotropic solid bodies allowing for general principal material directions. Please cite: Cardiff P, Karac A & Ivankovic A, A Large Strain Finite Volume Method for Orthotropic Bodies with General Material Orientations, Computer Methods in Applied Mechanics & Engineering, 2013, http://dx.doi.org/10.1016/j.cma.2013.09.008 Author Philip Cardiff UCD \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "constitutiveModel.H" #include "solidInterface.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" # include "createFields.H" # include "createHistory.H" # include "readDivSigmaExpMethod.H" # include "createSolidInterfaceOrthotropic.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info<< "\nStarting time loop\n" << endl; while(runTime.loop()) { Info<< "Time = " << runTime.timeName() << nl << endl; # include "readSolidMechanicsControls.H" int iCorr = 0; lduSolverPerformance solverPerf; scalar initialResidual = 1.0; scalar relativeResidual = 1.0; lduMatrix::debug = 0; do { U.storePrevIter(); # include "calculateDivSigmaExp.H" //- Linear momentum equation fvVectorMatrix UEqn ( rho*fvm::d2dt2(U) == fvm::laplacian(Kf, U, "laplacian(K,U)") + divSigmaExp ); if (solidInterfaceCorr) { solidInterfacePtr->correct(UEqn); } solverPerf = UEqn.solve(); if (iCorr == 0) { initialResidual = solverPerf.initialResidual(); } U.relax(); gradU = fvc::grad(U); // use leastSquaresSolidInterface //# include "setPlaneStressGradU.H" # include "calculateRelativeResidual.H" if (iCorr % infoFrequency == 0) { Info<< "\tTime " << runTime.value() << ", Corr " << iCorr << ", Solving for " << U.name() << " using " << solverPerf.solverName() << ", res = " << solverPerf.initialResidual() << ", rel res = " << relativeResidual << ", inner iters " << solverPerf.nIterations() << endl; } } while ( solverPerf.initialResidual() > convergenceTolerance && ++iCorr < nCorr ); Info<< nl << "Time " << runTime.value() << ", Solving for " << U.name() << ", Initial residual = " << initialResidual << ", Final residual = " << solverPerf.initialResidual() << ", No outer iterations " << iCorr << nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << endl; # include "calculateEpsilonSigma.H" # include "writeFields.H" # include "writeHistory.H" Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s\n\n" << endl; } Info<< "End\n" << endl; return(0); } // ************************************************************************* //