/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 4.1
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see .
Application
transientDyMFoam
Description
Transient solver for incompressible, turbulent flow, with implicit
coupling between pressure and velocity achieved by fvBlockMatrix.
Turbulence is solved using the existing turbulence model structure.
The solver supports dynamic mesh changes
Authors
Hrvoje Jasak, Wikki Ltd.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "fvBlockMatrix.H"
#include "singlePhaseTransportModel.H"
#include "turbulenceModel.H"
#include "dynamicFvMesh.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createDynamicFvMesh.H"
# include "createFields.H"
# include "initContinuityErrs.H"
# include "initConvergenceCheck.H"
# include "createControls.H"
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
# include "readBlockSolverControls.H"
# include "readFieldBounds.H"
# include "CourantNo.H"
# include "setDeltaT.H"
// Make the fluxes absolute
fvc::makeAbsolute(phi, U);
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
bool meshChanged = mesh.update();
reduce(meshChanged, orOp());
# include "volContinuity.H"
if (correctPhi && meshChanged)
{
// Fluxes will be corrected to absolute velocity
// HJ, 6/Feb/2009
# include "correctPhi.H"
}
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, U);
if (mesh.moving() && checkMeshCourantNo)
{
# include "meshCourantNo.H"
}
if (meshChanged)
{
# include "CourantNo.H"
}
for (label i = 0; i < nOuterCorrectors; i++)
{
p.storePrevIter();
// Initialize the Up block system
fvBlockMatrix UpEqn(Up);
// Assemble and insert momentum equation
# include "UEqn.H"
// Assemble and insert pressure equation
# include "pEqn.H"
// Assemble and insert coupling terms
# include "couplingTerms.H"
// Solve the block matrix
residual = UpEqn.solve();
maxResidual = cmptMax(residual.initialResidual());
// Retrieve solution
UpEqn.retrieveSolution(0, U.internalField());
UpEqn.retrieveSolution(3, p.internalField());
U.correctBoundaryConditions();
p.correctBoundaryConditions();
phi = (fvc::interpolate(U) & mesh.Sf())
+ pEqn.flux()
+ presSource;
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, U);
# include "movingMeshContinuityErrs.H"
# include "boundPU.H"
p.relax();
turbulence->correct();
}
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
# include "convergenceCheck.H"
}
Info<< "End\n" << endl;
return 0;
}