/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright held by original author \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Application icoDyMOversetFoam Description Transient solver for incompressible, laminar flow of Newtonian fluids with dynamic mesh and immersed boundary mesh support. Author Hrvoje Jasak, Wikki Ltd. All rights reserved \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "dynamicFvMesh.H" #include "immersedBoundaryFvPatch.H" #include "immersedBoundaryAdjustPhi.H" #include "pimpleControl.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createDynamicFvMesh.H" pimpleControl pimple(mesh); # include "createFields.H" # include "initContinuityErrs.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info<< "\nStarting time loop\n" << endl; while (runTime.loop()) { Info<< "Time = " << runTime.timeName() << nl << endl; // Make the fluxes absolute fvc::makeAbsolute(phi, U); bool meshChanged = mesh.update(); reduce(meshChanged, orOp()); Info<< "Mesh update" << meshChanged << endl; # include "createIbMasks.H" // Make the fluxes relative to the mesh motion fvc::makeRelative(phi, U); # include "CourantNo.H" // Pressure-velocity corrector while (pimple.loop()) { fvVectorMatrix UEqn ( fvm::ddt(U) + fvm::div(phi, U) - fvm::laplacian(nu, U) ); if (pimple.momentumPredictor()) { solve(UEqn == -fvc::grad(p)); } // --- PISO loop while (pimple.correct()) { volScalarField rUA = 1.0/UEqn.A(); U = rUA*UEqn.H(); // Immersed boundary update U.correctBoundaryConditions(); phi = faceIbMask*(fvc::interpolate(U) & mesh.Sf()); // Adjust immersed boundary fluxes immersedBoundaryAdjustPhi(phi, U); adjustPhi(phi, U, p); // Non-orthogonal pressure corrector loop while (pimple.correctNonOrthogonal()) { fvScalarMatrix pEqn ( fvm::laplacian(rUA, p) == fvc::div(phi) ); pEqn.setReference(pRefCell, pRefValue); pEqn.solve ( mesh.solutionDict().solver ( p.select(pimple.finalInnerIter()) ) ); if (pimple.finalNonOrthogonalIter()) { phi -= pEqn.flux(); } } # include "immersedBoundaryContinuityErrs.H" // Make the fluxes relative to the mesh motion fvc::makeRelative(phi, U); U -= rUA*fvc::grad(p); U.correctBoundaryConditions(); } } runTime.write(); Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << nl << endl; } Info<< "End\n" << endl; return(0); } // ************************************************************************* //