Info<< "Reading thermophysical properties\n" << endl; autoPtr pThermo ( basicPsiThermo::New(mesh) ); basicPsiThermo& thermo = pThermo(); volScalarField& p = thermo.p(); volScalarField& h = thermo.h(); const volScalarField& T = thermo.T(); volScalarField psis("psi", thermo.psi()/thermo.Cp()*thermo.Cv()); psis.oldTime(); volScalarField rho ( IOobject ( "rho", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), thermo.rho() ); rho.oldTime(); Info<< "\nReading field U\n" << endl; volVectorField U ( IOobject ( "U", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE ), mesh ); # include "compressibleCreatePhi.H" Info<< "Creating turbulence model\n" << endl; autoPtr turbulence ( compressible::RASModel::New ( rho, U, phi, thermo ) ); // Create MRF zones MRFZones mrfZones(mesh); mrfZones.correctBoundaryVelocity(U); // Create relative velocity volVectorField Urel ( IOobject ( "Urel", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), U ); mrfZones.relativeVelocity(Urel); // Create rotational velocity (= omega x r) volVectorField Urot ( "Urot", U - Urel ); // Create rothalpy, in two steps to preserve boundary conditions volScalarField i ( IOobject ( "i", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), h ); i -= 0.5*magSqr(Urot); mesh.schemesDict().setFluxRequired(p.name());