Info<< "Reading thermophysical properties\n" << endl; autoPtr pThermo ( basicPsiThermo::New(mesh) ); basicPsiThermo& thermo = pThermo(); volScalarField rho ( IOobject ( "rho", runTime.timeName(), mesh, IOobject::READ_IF_PRESENT, IOobject::AUTO_WRITE ), thermo.rho() ); volScalarField& p = thermo.p(); volScalarField& h = thermo.h(); const volScalarField& psi = thermo.psi(); Info<< "Reading field U\n" << endl; volVectorField U ( IOobject ( "U", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE ), mesh ); #include "compressibleCreatePhi.H" label pRefCell = 0; scalar pRefValue = 0.0; setRefCell(p, mesh.solutionDict().subDict("SIMPLE"), pRefCell, pRefValue); mesh.schemesDict().setFluxRequired(p.name()); dimensionedScalar pMin ( mesh.solutionDict().subDict("SIMPLE").lookup("pMin") ); Info<< "Creating turbulence model\n" << endl; autoPtr turbulence ( compressible::RASModel::New ( rho, U, phi, thermo ) ); dimensionedScalar initialMass = fvc::domainIntegrate(rho); porousZones pZones(mesh); Switch pressureImplicitPorosity(false); int nUCorr = 0; if (pZones.size()) { // nUCorrectors for pressureImplicitPorosity if (mesh.solutionDict().subDict("SIMPLE").found("nUCorrectors")) { nUCorr = readInt ( mesh.solutionDict().subDict("SIMPLE").lookup("nUCorrectors") ); } if (nUCorr > 0) { pressureImplicitPorosity = true; } }