{ volScalarField rUA = 1.0/UEqn.A(); for (int corr = 0; corr < nCorr; corr++) { U = rUA*UEqn.H(); surfaceScalarField psif = fvc::interpolate(psi); surfaceScalarField rhof = fvc::interpolate(rho); // Execute ddtPhiCorr before recalculating flux // HJ, 27/Apr/2010 surfaceScalarField phid ( "phid", psif*(fvc::interpolate(U) & mesh.Sf()) ); // Make flux relative within the MRF zone mrfZones.relativeFlux(psif, phid); // Calculate phi for boundary conditions phi = fvc::interpolate(rho*U) & mesh.Sf(); // Make flux relative within the MRF zone mrfZones.relativeFlux(rhof, phi); p.storePrevIter(); for (int nonOrth = 0; nonOrth <= nNonOrthCorr; nonOrth++) { fvScalarMatrix pEqn ( fvm::ddt(psi, p) + fvm::div(phid, p) - fvm::laplacian(rho*rUA, p) ); // Retain the residual from the first pressure solution eqnResidual = pEqn.solve().initialResidual(); if (corr == 0 && nonOrth == 0) { maxResidual = max(eqnResidual, maxResidual); } // Calculate the flux if (nonOrth == nNonOrthCorr) { phi = pEqn.flux(); } } # include "compressibleContinuityErrs.H" // Explicitly relax the pressure for momentum corrector p.relax(); U -= rUA*fvc::grad(p); U.correctBoundaryConditions(); } // Bound the pressure if (min(p) < pMin || max(p) > pMax) { p.max(pMin); p.min(pMax); p.correctBoundaryConditions(); } // Bound the velocity volScalarField magU = mag(U); if (max(magU) > UMax) { volScalarField Ulimiter = pos(magU - UMax)*UMax/(magU + smallU) + neg(magU - UMax); Ulimiter.max(scalar(0)); Ulimiter.min(scalar(1)); U *= Ulimiter; U.correctBoundaryConditions(); } }