/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | foam-extend: Open Source CFD \\ / O peration | Version: 3.2 \\ / A nd | Web: http://www.foam-extend.org \\/ M anipulation | For copyright notice see file Copyright ------------------------------------------------------------------------------- License This file is part of foam-extend. foam-extend is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. foam-extend is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with foam-extend. If not, see . Application solidStress Description Calculates and writes the scalar fields of the six components of the stress tensor sigma for each time for linear stress analysis calculations. \*---------------------------------------------------------------------------*/ #include "fvCFD.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "addTimeOptions.H" # include "setRootCase.H" # include "createTime.H" // Get times list instantList Times = runTime.times(); // set startTime and endTime depending on -time and -latestTime options # include "checkTimeOptions.H" runTime.setTime(Times[startTime], startTime); # include "createMesh.H" # include "readMechanicalProperties.H" for (label i = startTime; i < endTime; i++) { runTime.setTime(Times[i], i); Info<< "Time = " << runTime.timeName() << endl; mesh.readUpdate(); IOobject Uheader ( "U", runTime.timeName(), mesh, IOobject::MUST_READ ); // Check U exists if (Uheader.headerOk()) { mesh.readUpdate(); Info<< " Reading U" << endl; volVectorField U(Uheader, mesh); volTensorField gradU = fvc::grad(U); volSymmTensorField sigma = rho*(2.0*mu*symm(gradU) + lambda*I*tr(gradU)); volScalarField sigmaEq ( IOobject ( "sigmaEq", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), sqrt((3.0/2.0)*magSqr(dev(sigma))) ); Info<< "Max sigmaEq = " << max(sigmaEq).value() << endl; sigmaEq.write(); volScalarField sigmaxx ( IOobject ( "sigmaxx", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), sigma.component(symmTensor::XX) ); sigmaxx.write(); volScalarField sigmayy ( IOobject ( "sigmayy", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), sigma.component(symmTensor::YY) ); sigmayy.write(); volScalarField sigmazz ( IOobject ( "sigmazz", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), sigma.component(symmTensor::ZZ) ); sigmazz.write(); volScalarField sigmaxy ( IOobject ( "sigmaxy", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), sigma.component(symmTensor::XY) ); sigmaxy.write(); volScalarField sigmaxz ( IOobject ( "sigmaxz", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), sigma.component(symmTensor::XZ) ); sigmaxz.write(); volScalarField sigmayz ( IOobject ( "sigmayz", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), sigma.component(symmTensor::YZ) ); sigmayz.write(); } else { Info<< " No U" << endl; } Info<< endl; } Info<< "End" << endl; return(0); } // ************************************************************************* //