/* * Progressive Mesh type Polygon Reduction Algorithm * by Stan Melax (c) 1998 * Permission to use any of this code wherever you want is granted.. * Although, please do acknowledge authorship if appropriate. * * See the header file progmesh.h for a description of this module */ #include #include #include #include //#include #include "vector.h" #include "list.h" #include "progmesh.h" #define min(x,y) (((x) <= (y)) ? (x) : (y)) #define max(x,y) (((x) >= (y)) ? (x) : (y)) /* * For the polygon reduction algorithm we use data structures * that contain a little bit more information than the usual * indexed face set type of data structure. * From a vertex we wish to be able to quickly get the * neighboring faces and vertices. */ class Triangle; class Vertex; class Triangle { public: Vertex * vertex[3]; // the 3 points that make this tri Vector normal; // unit vector othogonal to this face Triangle(Vertex *v0,Vertex *v1,Vertex *v2); ~Triangle(); void ComputeNormal(); void ReplaceVertex(Vertex *vold,Vertex *vnew); int HasVertex(Vertex *v); }; class Vertex { public: Vector position; // location of point in euclidean space int id; // place of vertex in original list List neighbor; // adjacent vertices List face; // adjacent triangles float objdist; // cached cost of collapsing edge Vertex * collapse; // candidate vertex for collapse Vertex(Vector v,int _id); ~Vertex(); void RemoveIfNonNeighbor(Vertex *n); }; List vertices; List triangles; Triangle::Triangle(Vertex *v0,Vertex *v1,Vertex *v2){ assert(v0!=v1 && v1!=v2 && v2!=v0); vertex[0]=v0; vertex[1]=v1; vertex[2]=v2; ComputeNormal(); triangles.Add(this); for(int i=0;i<3;i++) { vertex[i]->face.Add(this); for(int j=0;j<3;j++) if(i!=j) { vertex[i]->neighbor.AddUnique(vertex[j]); } } } Triangle::~Triangle(){ int i; triangles.Remove(this); for(i=0;i<3;i++) { if(vertex[i]) vertex[i]->face.Remove(this); } for(i=0;i<3;i++) { int i2 = (i+1)%3; if(!vertex[i] || !vertex[i2]) continue; vertex[i ]->RemoveIfNonNeighbor(vertex[i2]); vertex[i2]->RemoveIfNonNeighbor(vertex[i ]); } } int Triangle::HasVertex(Vertex *v) { return (v==vertex[0] ||v==vertex[1] || v==vertex[2]); } void Triangle::ComputeNormal(){ Vector v0=vertex[0]->position; Vector v1=vertex[1]->position; Vector v2=vertex[2]->position; normal = (v1-v0)*(v2-v1); if(magnitude(normal)==0)return; normal = normalize(normal); } void Triangle::ReplaceVertex(Vertex *vold,Vertex *vnew) { assert(vold && vnew); assert(vold==vertex[0] || vold==vertex[1] || vold==vertex[2]); assert(vnew!=vertex[0] && vnew!=vertex[1] && vnew!=vertex[2]); if(vold==vertex[0]){ vertex[0]=vnew; } else if(vold==vertex[1]){ vertex[1]=vnew; } else { assert(vold==vertex[2]); vertex[2]=vnew; } int i; vold->face.Remove(this); assert(!vnew->face.Contains(this)); vnew->face.Add(this); for(i=0;i<3;i++) { vold->RemoveIfNonNeighbor(vertex[i]); vertex[i]->RemoveIfNonNeighbor(vold); } for(i=0;i<3;i++) { assert(vertex[i]->face.Contains(this)==1); for(int j=0;j<3;j++) if(i!=j) { vertex[i]->neighbor.AddUnique(vertex[j]); } } ComputeNormal(); } Vertex::Vertex(Vector v,int _id) { position =v; id=_id; vertices.Add(this); } Vertex::~Vertex(){ assert(face.num==0); while(neighbor.num) { neighbor[0]->neighbor.Remove(this); neighbor.Remove(neighbor[0]); } vertices.Remove(this); } void Vertex::RemoveIfNonNeighbor(Vertex *n) { // removes n from neighbor list if n isn't a neighbor. if(!neighbor.Contains(n)) return; for(int i=0;iHasVertex(n)) return; } neighbor.Remove(n); } float ComputeEdgeCollapseCost(Vertex *u,Vertex *v) { // if we collapse edge uv by moving u to v then how // much different will the model change, i.e. how much "error". // Texture, vertex normal, and border vertex code was removed // to keep this demo as simple as possible. // The method of determining cost was designed in order // to exploit small and coplanar regions for // effective polygon reduction. // Is is possible to add some checks here to see if "folds" // would be generated. i.e. normal of a remaining face gets // flipped. I never seemed to run into this problem and // therefore never added code to detect this case. int i; float edgelength = magnitude(v->position - u->position); float curvature=0; // find the "sides" triangles that are on the edge uv List sides; for(i=0;iface.num;i++) { if(u->face[i]->HasVertex(v)){ sides.Add(u->face[i]); } } // use the triangle facing most away from the sides // to determine our curvature term for(i=0;iface.num;i++) { float mincurv=1; // curve for face i and closer side to it for(int j=0;jface[i]->normal ^ sides[j]->normal; mincurv = min(mincurv,(1-dotprod)/2.0f); } curvature = max(curvature,mincurv); } // the more coplanar the lower the curvature term return edgelength * curvature; } void ComputeEdgeCostAtVertex(Vertex *v) { // compute the edge collapse cost for all edges that start // from vertex v. Since we are only interested in reducing // the object by selecting the min cost edge at each step, we // only cache the cost of the least cost edge at this vertex // (in member variable collapse) as well as the value of the // cost (in member variable objdist). if(v->neighbor.num==0) { // v doesn't have neighbors so it costs nothing to collapse v->collapse=NULL; v->objdist=-0.01f; return; } v->objdist = 1000000; v->collapse=NULL; // search all neighboring edges for "least cost" edge for(int i=0;ineighbor.num;i++) { float dist; dist = ComputeEdgeCollapseCost(v,v->neighbor[i]); if(distobjdist) { v->collapse=v->neighbor[i]; // candidate for edge collapse v->objdist=dist; // cost of the collapse } } } void ComputeAllEdgeCollapseCosts() { // For all the edges, compute the difference it would make // to the model if it was collapsed. The least of these // per vertex is cached in each vertex object. for(int i=0;itmp; // make tmp a list of all the neighbors of u for(i=0;ineighbor.num;i++) { tmp.Add(u->neighbor[i]); } // delete triangles on edge uv: for(i=u->face.num-1;i>=0;i--) { if(u->face[i]->HasVertex(v)) { delete(u->face[i]); } } // update remaining triangles to have v instead of u for(i=u->face.num-1;i>=0;i--) { u->face[i]->ReplaceVertex(u,v); } delete u; // recompute the edge collapse costs for neighboring vertices for(i=0;i &vert){ for(int i=0;i &tri){ for(int i=0;iobjdist < mn->objdist) { mn = vertices[i]; } } return mn; } void ProgressiveMesh(List &vert, List &tri, List &map, List &permutation) { AddVertex(vert); // put input data into our data structures AddFaces(tri); ComputeAllEdgeCollapseCosts(); // cache all edge collapse costs permutation.SetSize(vertices.num); // allocate space map.SetSize(vertices.num); // allocate space // reduce the object down to nothing: while(vertices.num > 0) { // get the next vertex to collapse Vertex *mn = MinimumCostEdge(); // keep track of this vertex, i.e. the collapse ordering permutation[mn->id]=vertices.num-1; // keep track of vertex to which we collapse to map[vertices.num-1] = (mn->collapse)?mn->collapse->id:-1; // Collapse this edge Collapse(mn,mn->collapse); } // reorder the map list based on the collapse ordering for(int i=0;i