/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 4.1
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see .
Application
writeIbMasks
Description
Calculate and write immersed boundary masks
\*---------------------------------------------------------------------------*/
#include "calc.H"
#include "fvc.H"
#include "fvMatrices.H"
#include "immersedBoundaryFvPatch.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
void Foam::calc(const argList& args, const Time& runTime, const fvMesh& mesh)
{
Info<< nl << "Calculating gamma" << endl;
volScalarField gamma
(
IOobject
(
"gamma",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("one", dimless, 1)
);
gamma.internalField() = mesh.V()/mesh.cellVolumes();
// Report minimal live cell volume
scalar minLiveGamma = GREAT;
label minLiveCell = -1;
const scalarField& gammaIn = gamma.internalField();
forAll (mesh.boundary(), patchI)
{
if (isA(mesh.boundary()[patchI]))
{
const immersedBoundaryFvPatch& ibPatch =
refCast
(
mesh.boundary()[patchI]
);
const labelList& ibCells = ibPatch.ibPolyPatch().ibCells();
forAll (ibCells, dcI)
{
if (gammaIn[ibCells[dcI]] < minLiveGamma)
{
minLiveGamma = gammaIn[ibCells[dcI]];
minLiveCell = ibCells[dcI];
}
}
}
}
Info<< "Min live cell " << minLiveCell
<< " gamma = " << minLiveGamma
<< endl;
Info<< nl << "Calculating sGamma" << endl;
surfaceScalarField sGamma
(
IOobject
(
"sGamma",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("one", dimless, 0)
);
const surfaceScalarField& magSf = mesh.magSf();
const scalarField magFaceAreas = mag(mesh.faceAreas());
sGamma.internalField() =
magSf.internalField()/
scalarField::subField(magFaceAreas, mesh.nInternalFaces());
forAll (mesh.boundary(), patchI)
{
if (!isA(mesh.boundary()[patchI]))
{
sGamma.boundaryField()[patchI] =
magSf.boundaryField()[patchI]/
mesh.boundary()[patchI].patchSlice(magFaceAreas);
gamma.boundaryField()[patchI] =
sGamma.boundaryField()[patchI];
}
}
sGamma.write();
gamma.write();
// Check consistency of face area vectors
Info<< nl << "Calculating divSf" << endl;
volVectorField divSf
(
"divSf",
fvc::surfaceIntegrate(mesh.Sf())
);
divSf.write();
// Check divergence of face area vectors. Note: scale by the volume
// to avoid bias towards small cells. HJ, 13/Mar/2019
scalarField magDivSf = mag(divSf)().internalField()*mesh.V().field();
Info<< "Face areas divergence (min, max, average): "
<< "(" << min(magDivSf) << " " << max(magDivSf)
<< " " << average(magDivSf) << ")"
<< endl;
if (max(magDivSf) > primitiveMesh::closedThreshold_)
{
WarningIn("writeIbMasks")
<< "Possible problem with immersed boundary face area vectors: "
<< max(magDivSf)
<< endl;
scalar maxOpenCell = 0;
label maxOpenCellIndex = -1;
forAll (magDivSf, cellI)
{
if (magDivSf[cellI] > maxOpenCell)
{
maxOpenCell = magDivSf[cellI];
maxOpenCellIndex = cellI;
}
if (magDivSf[cellI] > 1e-9)
{
Info<< "Open cell " << cellI << ": " << magDivSf[cellI]
<< " gamma: " << gamma[cellI] << endl;
}
}
const surfaceVectorField& Sf = mesh.Sf();
const labelList& openCellFaces = mesh.cells()[maxOpenCellIndex];
scalarField openCellFaceGamma(openCellFaces.size(), scalar(-1));
vectorField openFaceAreas
(
IndirectList(mesh.faceAreas(), openCellFaces)()
);
vectorField adjustedFaceAreas(openCellFaces.size());
forAll (openCellFaces, cfI)
{
const label& faceI = openCellFaces[cfI];
if (mesh.isInternalFace(faceI))
{
openCellFaceGamma[cfI] = sGamma.internalField()[faceI];
adjustedFaceAreas[cfI] = Sf.internalField()[faceI];
}
else
{
const label patchI = mesh.boundaryMesh().whichPatch(faceI);
const label patchFaceI =
mesh.boundaryMesh()[patchI].whichFace(faceI);
openCellFaceGamma[cfI] =
sGamma.boundaryField()[patchI][patchFaceI];
adjustedFaceAreas[cfI] = Sf.boundaryField()[patchI][patchFaceI];
}
}
// Find faces on IB patches
vectorField ibVectors(mesh.boundary().size());
label nIbVectors = 0;
forAll (mesh.boundary(), patchI)
{
if (isA(mesh.boundary()[patchI]))
{
const labelList& ibpFC = mesh.boundary()[patchI].faceCells();
forAll (ibpFC, ibpFCI)
{
if (ibpFC[ibpFCI] == maxOpenCellIndex)
{
ibVectors[nIbVectors] =
mesh.Sf().boundaryField()[patchI][ibpFCI];
nIbVectors++;
}
}
}
}
ibVectors.setSize(nIbVectors);
Pout<< "Max open cell index: " << maxOpenCellIndex
<< " magDivSf = " << maxOpenCell << nl
<< "faces: " << openCellFaces << nl
<< " original areas: " << openFaceAreas << nl
<< "sGamma: " << openCellFaceGamma << nl
<< "adjusted areas: " << adjustedFaceAreas << nl
<< "cut face areas: " << ibVectors << nl
<< "Sum normal areas: " << sum(openFaceAreas) << nl
<< "Sum iB areas: " << sum(ibVectors) << nl
<< endl;
}
Info<< endl;
}
// ************************************************************************* //