/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration |
\\ / A nd | For copyright notice see file Copyright
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see .
Application
Pe
Description
Calculates and writes the Pe number as a surfaceScalarField obtained from
field phi.
The -noWrite option just outputs the max/min values without writing
the field.
\*---------------------------------------------------------------------------*/
#include "calc.H"
#include "fvc.H"
#include "incompressible/singlePhaseTransportModel/singlePhaseTransportModel.H"
#include "incompressible/RAS/RASModel/RASModel.H"
#include "incompressible/LES/LESModel/LESModel.H"
#include "basicPsiThermo.H"
#include "compressible/RAS/RASModel/RASModel.H"
#include "compressible/LES/LESModel/LESModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
void Foam::calc(const argList& args, const Time& runTime, const fvMesh& mesh)
{
bool writeResults = !args.optionFound("noWrite");
IOobject phiHeader
(
"phi",
runTime.timeName(),
mesh,
IOobject::MUST_READ
);
if (phiHeader.headerOk())
{
autoPtr PePtr;
Info<< " Reading phi" << endl;
surfaceScalarField phi(phiHeader, mesh);
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ
),
mesh
);
IOobject RASPropertiesHeader
(
"RASProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
);
IOobject LESPropertiesHeader
(
"LESProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
);
Info<< " Calculating Pe" << endl;
if (phi.dimensions() == dimensionSet(0, 3, -1, 0, 0))
{
if (RASPropertiesHeader.headerOk())
{
IOdictionary RASProperties(RASPropertiesHeader);
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr RASModel
(
incompressible::RASModel::New
(
U,
phi,
laminarTransport
)
);
PePtr.set
(
new surfaceScalarField
(
IOobject
(
"Pe",
runTime.timeName(),
mesh,
IOobject::NO_READ
),
mag(phi)
/(
mesh.magSf()
* mesh.surfaceInterpolation::deltaCoeffs()
* fvc::interpolate(RASModel->nuEff())
)
)
);
}
else if (LESPropertiesHeader.headerOk())
{
IOdictionary LESProperties(LESPropertiesHeader);
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr sgsModel
(
incompressible::LESModel::New(U, phi, laminarTransport)
);
PePtr.set
(
new surfaceScalarField
(
IOobject
(
"Pe",
runTime.timeName(),
mesh,
IOobject::NO_READ
),
mag(phi)
/(
mesh.magSf()
* mesh.surfaceInterpolation::deltaCoeffs()
* fvc::interpolate(sgsModel->nuEff())
)
)
);
}
else
{
IOdictionary transportProperties
(
IOobject
(
"transportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
dimensionedScalar nu(transportProperties.lookup("nu"));
PePtr.set
(
new surfaceScalarField
(
IOobject
(
"Pe",
runTime.timeName(),
mesh,
IOobject::NO_READ
),
mesh.surfaceInterpolation::deltaCoeffs()
* (mag(phi)/mesh.magSf())*(runTime.deltaT()/nu)
)
);
}
}
else if (phi.dimensions() == dimensionSet(1, 0, -1, 0, 0))
{
if (RASPropertiesHeader.headerOk())
{
IOdictionary RASProperties(RASPropertiesHeader);
autoPtr thermo(basicPsiThermo::New(mesh));
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh
),
thermo->rho()
);
autoPtr RASModel
(
compressible::RASModel::New
(
rho,
U,
phi,
thermo()
)
);
PePtr.set
(
new surfaceScalarField
(
IOobject
(
"Pe",
runTime.timeName(),
mesh,
IOobject::NO_READ
),
mag(phi)
/(
mesh.magSf()
* mesh.surfaceInterpolation::deltaCoeffs()
* fvc::interpolate(RASModel->muEff())
)
)
);
}
else if (LESPropertiesHeader.headerOk())
{
IOdictionary LESProperties(LESPropertiesHeader);
autoPtr thermo(basicPsiThermo::New(mesh));
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh
),
thermo->rho()
);
autoPtr sgsModel
(
compressible::LESModel::New(rho, U, phi, thermo())
);
PePtr.set
(
new surfaceScalarField
(
IOobject
(
"Pe",
runTime.timeName(),
mesh,
IOobject::NO_READ
),
mag(phi)
/(
mesh.magSf()
* mesh.surfaceInterpolation::deltaCoeffs()
* fvc::interpolate(sgsModel->muEff())
)
)
);
}
else
{
IOdictionary transportProperties
(
IOobject
(
"transportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
dimensionedScalar mu(transportProperties.lookup("mu"));
PePtr.set
(
new surfaceScalarField
(
IOobject
(
"Pe",
runTime.timeName(),
mesh,
IOobject::NO_READ
),
mesh.surfaceInterpolation::deltaCoeffs()
* (mag(phi)/(mesh.magSf()))*(runTime.deltaT()/mu)
)
);
}
}
else
{
FatalErrorIn(args.executable())
<< "Incorrect dimensions of phi: " << phi.dimensions()
<< abort(FatalError);
}
// can also check how many cells exceed a particular Pe limit
/*
{
label count = 0;
label PeLimit = 200;
forAll(PePtr(), i)
{
if (PePtr()[i] > PeLimit)
{
count++;
}
}
Info<< "Fraction > " << PeLimit << " = "
<< scalar(count)/Pe.size() << endl;
}
*/
Info << "Pe max : " << max(PePtr()).value() << endl;
if (writeResults)
{
PePtr().write();
}
}
else
{
Info<< " No phi" << endl;
}
Info<< "\nEnd\n" << endl;
}
// ************************************************************************* //