/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | foam-extend: Open Source CFD \\ / O peration | Version: 4.0 \\ / A nd | Web: http://www.foam-extend.org \\/ M anipulation | For copyright notice see file Copyright ------------------------------------------------------------------------------- License This file is part of foam-extend. foam-extend is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. foam-extend is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with foam-extend. If not, see . Application sonicLiquidFoam Description Transient solver for trans-sonic/supersonic, laminar flow of a compressible liquid. \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "pimpleControl.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" pimpleControl pimple(mesh); # include "readThermodynamicProperties.H" # include "readTransportProperties.H" # include "createFields.H" # include "initContinuityErrs.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info<< "\nStarting time loop\n" << endl; while (runTime.loop()) { Info<< "Time = " << runTime.timeName() << nl << endl; # include "compressibleCourantNo.H" # include "rhoEqn.H" // --- PIMPLE loop while (pimple.loop()) { fvVectorMatrix UEqn ( fvm::ddt(rho, U) + fvm::div(phi, U) - fvm::laplacian(mu, U) ); solve(UEqn == -fvc::grad(p)); // --- PISO loop while (pimple.correct()) { volScalarField rAU("rAU", 1.0/UEqn.A()); surfaceScalarField rhorAUf ( "rhorAUf", fvc::interpolate(rho*rAU) ); U = rAU*UEqn.H(); surfaceScalarField phid ( "phid", psi* ( (fvc::interpolate(U) & mesh.Sf()) + fvc::ddtPhiCorr(rAU, rho, U, phi) ) ); phi = (rhoO/psi)*phid; fvScalarMatrix pEqn ( fvm::ddt(psi, p) + fvc::div(phi) + fvm::div(phid, p) - fvm::laplacian(rhorAUf, p) ); pEqn.solve(); phi += pEqn.flux(); # include "rhoEqn.H" # include "compressibleContinuityErrs.H" // Correct velocity U -= rAU*fvc::grad(p); U.correctBoundaryConditions(); } } // Correct density rho = rhoO + psi*p; runTime.write(); Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << nl << endl; } Info<< "End\n" << endl; return(0); } // ************************************************************************* //