/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright held by original author \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA \*---------------------------------------------------------------------------*/ #include "SchillerNaumann.H" #include "addToRunTimeSelectionTable.H" // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // namespace Foam { defineTypeNameAndDebug(SchillerNaumann, 0); addToRunTimeSelectionTable ( dragModel, SchillerNaumann, dictionary ); } // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * // Foam::SchillerNaumann::SchillerNaumann ( const dictionary& interfaceDict, const volScalarField& alpha, const phaseModel& phasea, const phaseModel& phaseb ) : dragModel(interfaceDict, alpha, phasea, phaseb) {} // * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * // Foam::SchillerNaumann::~SchillerNaumann() {} // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * // Foam::tmp Foam::SchillerNaumann::K ( const volScalarField& Ur ) const { volScalarField Re = max(Ur*phasea_.d()/phaseb_.nu(), scalar(1.0e-3)); volScalarField Cds = 24.0*(scalar(1) + 0.15*pow(Re, 0.687))/Re; forAll(Re, celli) { if(Re[celli] > 1000.0) { Cds[celli] = 0.44; } } return 0.75*Cds*phaseb_.rho()*Ur/phasea_.d(); } // ************************************************************************* //