/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright held by original author \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Application channelFoam Description Incompressible LES solver for flow in a channel. \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "singlePhaseTransportModel.H" #include "LESModel.H" #include "IFstream.H" #include "OFstream.H" #include "Random.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { #include "setRootCase.H" #include "createTime.H" #include "createMesh.H" #include "readTransportProperties.H" #include "createFields.H" #include "initContinuityErrs.H" #include "createGradP.H" Info<< "\nStarting time loop\n" << endl; while (runTime.loop()) { Info<< "Time = " << runTime.timeName() << nl << endl; #include "readPISOControls.H" #include "CourantNo.H" sgsModel->correct(); fvVectorMatrix UEqn ( fvm::ddt(U) + fvm::div(phi, U) + sgsModel->divDevBeff(U) == flowDirection*gradP ); if (momentumPredictor) { solve(UEqn == -fvc::grad(p)); } // --- PISO loop volScalarField rUA = 1.0/UEqn.A(); for (int corr = 0; corr < nCorr; corr++) { U = rUA*UEqn.H(); phi = (fvc::interpolate(U) & mesh.Sf()) + fvc::ddtPhiCorr(rUA, U, phi); adjustPhi(phi, U, p); for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++) { fvScalarMatrix pEqn ( fvm::laplacian(rUA, p) == fvc::div(phi) ); pEqn.setReference(pRefCell, pRefValue); if (corr == nCorr-1 && nonOrth == nNonOrthCorr) { pEqn.solve(mesh.solutionDict().solver(p.name() + "Final")); } else { pEqn.solve(mesh.solutionDict().solver(p.name())); } if (nonOrth == nNonOrthCorr) { phi -= pEqn.flux(); } } #include "continuityErrs.H" U -= rUA*fvc::grad(p); U.correctBoundaryConditions(); } // Correct driving force for a constant mass flow rate // Extract the velocity in the flow direction dimensionedScalar magUbarStar = (flowDirection & U)().weightedAverage(mesh.V()); // Calculate the pressure gradient increment needed to // adjust the average flow-rate to the correct value dimensionedScalar gragPplus = (magUbar - magUbarStar)/rUA.weightedAverage(mesh.V()); U += flowDirection*rUA*gragPplus; gradP += gragPplus; Info<< "Uncorrected Ubar = " << magUbarStar.value() << tab << "pressure gradient = " << gradP.value() << endl; runTime.write(); #include "writeGradP.H" Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << nl << endl; } Info<< "End\n" << endl; return 0; } // ************************************************************************* //