/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright held by original author \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Application icoDyMSimpleFoam Description Transient solver for incompressible, laminar flow of Newtonian fluids with dynamic mesh. Solver implements a SIMPLE-based algorithm in time-stepping mode. Author Hrvoje Jasak, Wikki Ltd. All rights reserved. \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "dynamicFvMesh.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createDynamicFvMesh.H" # include "initContinuityErrs.H" # include "initTotalVolume.H" # include "createFields.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info<< "\nStarting time loop\n" << endl; while (runTime.run()) { # include "readControls.H" # include "checkTotalVolume.H" # include "CourantNo.H" // Make the fluxes absolute fvc::makeAbsolute(phi, U); # include "setDeltaT.H" runTime++; Info<< "Time = " << runTime.timeName() << nl << endl; bool meshChanged = mesh.update(); # include "volContinuity.H" if (correctPhi && meshChanged) { // Fluxes will be corrected to absolute velocity // HJ, 6/Feb/2009 # include "correctPhi.H" } // Make the fluxes relative to the mesh motion fvc::makeRelative(phi, U); if (checkMeshCourantNo) { # include "meshCourantNo.H" } // --- SIMPLE loop for (int ocorr = 0; ocorr < nOuterCorr; ocorr++) { # include "CourantNo.H" # include "UEqn.H" rAU = 1.0/UEqn.A(); U = rAU*UEqn.H(); phi = (fvc::interpolate(U) & mesh.Sf()); //+ fvc::ddtPhiCorr(rAU, U, phi); adjustPhi(phi, U, p); p.storePrevIter(); for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++) { fvScalarMatrix pEqn ( fvm::laplacian(rAU, p) == fvc::div(phi) ); pEqn.setReference(pRefCell, pRefValue); if ( ocorr == nOuterCorr - 1 && nonOrth == nNonOrthCorr ) { pEqn.solve(mesh.solver(p.name() + "Final")); } else { pEqn.solve(mesh.solver(p.name())); } if (nonOrth == nNonOrthCorr) { phi -= pEqn.flux(); } } # include "continuityErrs.H" // Explicitly relax pressure for momentum corrector p.relax(); // Make the fluxes relative to the mesh motion fvc::makeRelative(phi, U); U -= rAU*fvc::grad(p); U.correctBoundaryConditions(); } runTime.write(); Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << nl << endl; } Info<< "End\n" << endl; return(0); } // ************************************************************************* //