/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright held by original author \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Application blockCoupledScalarTransportFoam Description Solves two coupled transport equations in a block-coupled manner 1) transport equation for a passive scalar 2) diffusion only This resembles heat exchanging flow through a porous medium \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "fieldTypes.H" #include "Time.H" #include "fvMesh.H" #include "blockLduSolvers.H" #include "VectorNFieldTypes.H" #include "volVectorNFields.H" #include "blockVectorNMatrices.H" #include "blockMatrixTools.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" # include "createFields.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info<< "\nCalculating scalar transport\n" << endl; # include "CourantNo.H" for (runTime++; !runTime.end(); runTime++) { Info<< "Time = " << runTime.timeName() << nl << endl; # include "readSIMPLEControls.H" for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++) { fvScalarMatrix TEqn ( fvm::div(phi, T) - fvm::laplacian(DT, T) == alpha*Ts - fvm::Sp(alpha, T) ); TEqn.relax(); fvScalarMatrix TsEqn ( - fvm::laplacian(DTs, Ts) == alpha*T - fvm::Sp(alpha, Ts) ); TsEqn.relax(); // Prepare block system BlockLduMatrix blockM(mesh); // Grab block diagonal and set it to zero Field& d = blockM.diag().asSquare(); d = tensor2::zero; // Grab linear off-diagonal and set it to zero Field& u = blockM.upper().asLinear(); Field& l = blockM.lower().asLinear(); u = vector2::zero; l = vector2::zero; vector2Field& blockX = blockT.internalField(); // vector2Field blockX(mesh.nCells(), vector2::zero); vector2Field blockB(mesh.nCells(), vector2::zero); //- Inset equations into block Matrix blockMatrixTools::insertEquation(0, TEqn, blockM, blockX, blockB); blockMatrixTools::insertEquation(1, TsEqn, blockM, blockX, blockB); //- Add off-diagonal terms and remove from Block source forAll(d, i) { d[i](0,1) = -alpha.value()*mesh.V()[i]; d[i](1,0) = -alpha.value()*mesh.V()[i]; blockB[i][0] -= alpha.value()*blockX[i][1]*mesh.V()[i]; blockB[i][1] -= alpha.value()*blockX[i][0]*mesh.V()[i]; } //- Transfer the coupled interface list for processor/cyclic/etc. // boundaries blockM.interfaces() = blockT.boundaryField().blockInterfaces(); //- Transfer the coupled interface coefficients forAll(mesh.boundaryMesh(), patchI) { if (blockM.interfaces().set(patchI)) { Field& coupledLower = blockM.coupleLower()[patchI].asLinear(); Field& coupledUpper = blockM.coupleUpper()[patchI].asLinear(); const scalarField& TLower = TEqn.internalCoeffs()[patchI]; const scalarField& TUpper = TEqn.boundaryCoeffs()[patchI]; const scalarField& TsLower = TsEqn.internalCoeffs()[patchI]; const scalarField& TsUpper = TsEqn.boundaryCoeffs()[patchI]; blockMatrixTools::blockInsert(0, TLower, coupledLower); blockMatrixTools::blockInsert(1, TsLower, coupledLower); blockMatrixTools::blockInsert(0, TUpper, coupledUpper); blockMatrixTools::blockInsert(1, TsUpper, coupledUpper); } } //- Block coupled solver call BlockSolverPerformance solverPerf = BlockLduSolver::New ( word("blockVar"), blockM, mesh.solutionDict().solver("blockVar") )->solve(blockX, blockB); solverPerf.print(); // Retrieve solution blockMatrixTools::blockRetrieve(0, T.internalField(), blockX); blockMatrixTools::blockRetrieve(1, Ts.internalField(), blockX); T.correctBoundaryConditions(); Ts.correctBoundaryConditions(); } runTime.write(); } Info<< "End\n" << endl; return(0); } // ************************************************************************* //