/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright held by original author \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Application engineSwirl Description Generates a swirling flow for engine calulations \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "mathematicalConstants.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" # include "createFields.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // scalar Vphi = (mathematicalConstant::pi*swirlRPMRatio*rpm/30).value(); scalar b1 = j1(swirlProfile).value(); scalar b2 = 2.0*b1/swirlProfile.value() - j0(swirlProfile).value(); scalar omega = 0.125*(Vphi*bore*swirlProfile/b2).value(); scalar cylinderRadius = 0.5*bore.value(); scalar Umax = 0.0; forAll(mesh.C(), celli) { vector c = mesh.C()[celli] - swirlCenter; scalar r = ::pow(sqr(c & xT) + sqr(c & yT), 0.5); if (r <= cylinderRadius) { scalar b = j1(swirlProfile*r/cylinderRadius).value(); scalar vEff = omega*b; r = max(r, SMALL); U[celli] = ((vEff/r)*(c & yT))*xT + (-(vEff/r)*(c & xT))*yT; Umax = max(Umax, mag(U[celli])); } } Info << "Umax = " << Umax << endl; U.write(); Info << "\n end\n"; return 0; } // ************************************************************************* //