/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | foam-extend: Open Source CFD \\ / O peration | Version: 3.2 \\ / A nd | Web: http://www.foam-extend.org \\/ M anipulation | For copyright notice see file Copyright ------------------------------------------------------------------------------- License This file is part of foam-extend. foam-extend is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. foam-extend is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with foam-extend. If not, see . Description Generate analytical solution for a infinite plaste with a circular hole. Stress field sigma is generated. Based on solution outlined in Timoshenko, Theory of Elasticity. Author plateHoleSolution function by Z. Tukovic utility assembled by P. Cardiff \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "volFields.H" #include "fvc.H" #include "fixedValueFvPatchFields.H" #include "coordinateSystem.H" symmTensor plateHoleSolution(const vector& C); // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" runTime++; Info << "Writing analytical solution for an infinite plate with a circular hole,\nwhere" << "\n\tradius = 0.5" << "\n\tdistant traction = (10,000 0 0 )" << nl << endl; volSymmTensorField sigma ( IOobject ( "sigmaAnalyticalCylin", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), mesh, dimensionedSymmTensor("zero", dimForce/dimArea, symmTensor::zero) ); const volVectorField& C = mesh.C(); forAll(sigma.internalField(), celli) { vector curR = vector(C[celli].x(), C[celli].y(), 0); sigma.internalField()[celli] = plateHoleSolution(curR); } forAll(sigma.boundaryField(), patchi) { forAll(sigma.boundaryField()[patchi], facei) { vector curR = vector(C.boundaryField()[patchi][facei].x(), C.boundaryField()[patchi][facei].y(), 0); sigma.boundaryField()[patchi][facei] = plateHoleSolution(curR); } } Info << "Writing analytical sigma tensor" << endl; sigma.write(); Info << nl << "End" << endl; return 0; } // ************************************************************************* // symmTensor plateHoleSolution(const vector& C) { tensor sigma = tensor::zero; scalar T = 10000; scalar a = 0.5; scalar r = ::sqrt(sqr(C.x()) + sqr(C.y())); scalar theta = Foam::atan2(C.y(), C.x()); coordinateSystem cs("polarCS", C, vector(0, 0, 1), C/mag(C)); sigma.xx() = T*(1 - sqr(a)/sqr(r))/2 + T*(1 + 3*pow(a,4)/pow(r,4) - 4*sqr(a)/sqr(r))*::cos(2*theta)/2; sigma.xy() = - T*(1 - 3*pow(a,4)/pow(r,4) + 2*sqr(a)/sqr(r))*::sin(2*theta)/2; sigma.yx() = sigma.xy(); sigma.yy() = T*(1 + sqr(a)/sqr(r))/2 - T*(1 + 3*pow(a,4)/pow(r,4))*::cos(2*theta)/2; // Transformation to global coordinate system sigma = ((cs.R()&sigma)&cs.R().T()); symmTensor S = symmTensor::zero; S.xx() = sigma.xx(); S.xy() = sigma.xy(); S.yy() = sigma.yy(); return S; }