/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 2004-2007 Hrvoje Jasak \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Application elasticPlasticSolidFoam Description Transient/steady-state segregated finite-volume solver for large strain elastic plastic solid bodies. Displacement increment field DU is solved for using an updated Lagrangian approach, also generating the strain field epsilon, the plastic strain field epsilonP and the stress tensor field sigma. With optional multi-material solid interface correction ensuring correct tractions on multi-material interfaces, HOWEVER, tractions on interface will be incorrect when there is plasticity or large strain in the interface cells. Correction needs to be derived for plasticity and large strain. Author Philip Cardiff multi-material by Tukovic et al. 2012 \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "plasticityModel.H" #include "solidInterface.H" #include "volPointInterpolation.H" #include "pointPatchInterpolation.H" #include "primitivePatchInterpolation.H" #include "twoDPointCorrector.H" #include "pointFields.H" #include "plane.H" #include "meshSearch.H" #include "leastSquaresVolPointInterpolation.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" # include "createFields.H" # include "readDivDSigmaExpMethod.H" # include "readDivDSigmaLargeStrainExpMethod.H" # include "readMoveMeshMethod.H" # include "createSolidInterface.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info << "\nStarting time loop\n" << endl; for (runTime++; !runTime.end(); runTime++) { Info<< "Time: " << runTime.timeName() << nl << endl; # include "readStressedFoamControls.H" int iCorr = 0; lduMatrix::solverPerformance solverPerf; scalar initialResidual = 0; scalar relativeResidual = GREAT; lduMatrix::debug = 0; const volSymmTensorField& DEpsilonP = rheology.DEpsilonP(); do { DU.storePrevIter(); divDSigmaLargeStrainExp.storePrevIter(); # include "calculateDivDSigmaExp.H" # include "calculateDivDSigmaLargeStrainExp.H" //----------------------------------------------------// //- updated lagrangian large strain momentum equation //----------------------------------------------------// fvVectorMatrix DUEqn ( fvm::d2dt2(rho, DU) == fvm::laplacian(2*muf + lambdaf, DU, "laplacian(DDU,DU)") + divDSigmaExp + divDSigmaLargeStrainExp - fvc::div(2*muf*(mesh.Sf() & fvc::interpolate(DEpsilonP))) ); if(solidInterfaceCorr) { solidInterfacePtr->correct(DUEqn); } solverPerf = DUEqn.solve(); if(iCorr == 0) { initialResidual = solverPerf.initialResidual(); } DU.relax(); if(solidInterfaceCorr) { gradDU = solidInterfacePtr->grad(DU); } else { gradDU = fvc::grad(DU); } DF = gradDU.T(); # include "calculateRelativeResidual.H" rheology.correct(); mu = rheology.newMu(); lambda = rheology.newLambda(); muf = fvc::interpolate(rheology.newMu()); lambdaf = fvc::interpolate(rheology.newLambda()); if(solidInterfaceCorr) { solidInterfacePtr->modifyProperties(muf, lambdaf); } # include "calculateDEpsilonDSigma.H" Info << "\tTime " << runTime.value() << ", Corrector " << iCorr << ", Solving for " << DU.name() << " using " << solverPerf.solverName() << ", residual = " << solverPerf.initialResidual() << ", relative residual = " << relativeResidual << endl; } while ( //relativeResidual solverPerf.initialResidual() > convergenceTolerance && ++iCorr < nCorr ); Info << nl << "Time " << runTime.value() << ", Solving for " << DU.name() << ", Initial residual = " << initialResidual << ", Final residual = " << solverPerf.initialResidual() << ", No outer iterations " << iCorr << endl; lduMatrix::debug = 1; U += DU; epsilon += DEpsilon; epsilonP += DEpsilonP; volSymmTensorField DEpsilonE = DEpsilon - DEpsilonP; epsilonE += DEpsilonE; sigma += DSigma; rheology.updateYieldStress(); # include "rotateFields.H" # include "moveMesh.H" # include "writeFields.H" Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << nl << endl; } Info<< "End\n" << endl; return(0); } // ************************************************************************* //