/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 2004-2007 Hrvoje Jasak \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Class cohesiveZoneFvPatchVectorField Description \*---------------------------------------------------------------------------*/ #include "cohesiveZoneFvPatchVectorField.H" #include "addToRunTimeSelectionTable.H" #include "transformField.H" #include "volFields.H" #include "rheologyModel.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // namespace Foam { // * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * // // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * // cohesiveZoneFvPatchVectorField::cohesiveZoneFvPatchVectorField ( const fvPatch& p, const DimensionedField& iF ) : directionMixedFvPatchVectorField(p, iF), fieldName_("undefined"), cohesiveLawPtr_(NULL), relaxationFactor_(1.0) {} cohesiveZoneFvPatchVectorField::cohesiveZoneFvPatchVectorField ( const cohesiveZoneFvPatchVectorField& ptf, const fvPatch& p, const DimensionedField& iF, const fvPatchFieldMapper& mapper ) : directionMixedFvPatchVectorField(ptf, p, iF, mapper), fieldName_(ptf.fieldName_), cohesiveLawPtr_(ptf.cohesiveLawPtr_), relaxationFactor_(ptf.relaxationFactor_) {} cohesiveZoneFvPatchVectorField::cohesiveZoneFvPatchVectorField ( const fvPatch& p, const DimensionedField& iF, const dictionary& dict ) : directionMixedFvPatchVectorField(p, iF), fieldName_(dimensionedInternalField().name()), cohesiveLawPtr_ ( cohesiveLaw::New(dict.lookup("cohesiveLaw"), dict).ptr() ), relaxationFactor_(readScalar(dict.lookup("relaxationFactor"))) { if(fieldName_ != "U") { FatalError << "cohesiveZone boundary condition can only be used" << " with U solvers\n" << "For small strain DU (incremental) solvers, use cohesiveZoneIncremental" << exit(FatalError); } if (dict.found("refValue")) { this->refValue() = vectorField("refValue", dict, p.size()); } else { this->refValue() = vector::zero; } if (dict.found("refGradient")) { this->refGrad() = vectorField("refGradient", dict, p.size()); } else { this->refGrad() = vector::zero; } if (dict.found("valueFraction")) { this->valueFraction() = symmTensorField("valueFraction", dict, p.size()); } else { vectorField n = patch().nf(); this->valueFraction() = sqr(n); } if (dict.found("value")) { Field::operator=(vectorField("value", dict, p.size())); } else { Field normalValue = transform(valueFraction(), refValue()); Field gradValue = this->patchInternalField() + refGrad()/this->patch().deltaCoeffs(); Field transformGradValue = transform(I - valueFraction(), gradValue); Field::operator=(normalValue + transformGradValue); } } cohesiveZoneFvPatchVectorField::cohesiveZoneFvPatchVectorField ( const cohesiveZoneFvPatchVectorField& ptf, const DimensionedField& iF ) : directionMixedFvPatchVectorField(ptf, iF), fieldName_(ptf.fieldName_), cohesiveLawPtr_(ptf.cohesiveLawPtr_), relaxationFactor_(ptf.relaxationFactor_) {} // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * // // Map from self void cohesiveZoneFvPatchVectorField::autoMap ( const fvPatchFieldMapper& m ) { if (cohesiveLawPtr_ == NULL) { FatalErrorIn("cohesiveZoneFvPatchVectorField::autoMap") << "NULL cohesive law" << abort(FatalError); } directionMixedFvPatchVectorField::autoMap(m); } // Reverse-map the given fvPatchField onto this fvPatchField void cohesiveZoneFvPatchVectorField::rmap ( const fvPatchField& ptf, const labelList& addr ) { directionMixedFvPatchVectorField::rmap(ptf, addr); const cohesiveZoneFvPatchVectorField& dmptf = refCast(ptf); // No need to grab the cohesive zone pointer more than once if (!cohesiveLawPtr_) { cohesiveLawPtr_ = dmptf.cohesiveLawPtr_->clone().ptr(); relaxationFactor_ = dmptf.relaxationFactor_; } } void cohesiveZoneFvPatchVectorField::updateCoeffs() { if (this->updated()) { return; } // Looking up rheology const rheologyModel& rheology = this->db().objectRegistry::lookupObject("rheologyProperties"); const scalarField mu = rheology.mu()().boundaryField()[patch().index()]; const scalarField lambda = rheology.lambda()().boundaryField()[patch().index()]; const fvPatchField& gradField = patch().lookupPatchField ( "grad(" + fieldName_ + ")" ); // Patch displacement const vectorField& U = *this; // Patch stress tensorField sigma = mu*(gradField + gradField.T()) + I*(lambda*tr(gradField)); // Patch normal vectorField n = patch().nf(); // Normal stress component scalarField sigmaN = (n&(n&sigma)); // Chech crack propagation forAll(sigmaN, faceI) { vector cohesiveTraction = vector::zero; if ( (magSqr(valueFraction()[faceI]) > 1-SMALL) && (sigmaN[faceI] >= law().sigmaMax().value()) ) { // Switch to full traction boundary condition valueFraction()[faceI] = symmTensor::zero; Info << "Crack started at face: " << faceI << endl; // Cohesive traction cohesiveTraction = n[faceI]*law().sigmaMax().value(); } else if(magSqr(valueFraction()[faceI]) < SMALL) { // Normal displacement scalar Un = -(n[faceI]&U[faceI]); if(Un < 0) { // Return from traction to symmetryPlane refValue()[faceI] = vector::zero; refGrad() = vector::zero; valueFraction()[faceI] = sqr(n[faceI]); Info << "Face removed from crack: " << faceI << endl; } else if(Un > law().deltaC().value()/2) { // Traction free cohesiveTraction = vector::zero; } else { // Calculate cohesive traction from cohesive zone model cohesiveTraction = law().traction(2*Un)*n[faceI]; } } if(magSqr(valueFraction()[faceI]) < SMALL) { cohesiveTraction = relaxationFactor_*cohesiveTraction + (1.0 - relaxationFactor_)*sigmaN[faceI]*n[faceI]; refGrad()[faceI] = ( cohesiveTraction - ( n[faceI] & ( mu[faceI]*gradField[faceI].T() - (mu[faceI] + lambda[faceI])*gradField[faceI] ) ) - n[faceI]*lambda[faceI]*tr(gradField[faceI]) ) /(2.0*mu[faceI] + lambda[faceI]); } } directionMixedFvPatchVectorField::updateCoeffs(); } // Write void cohesiveZoneFvPatchVectorField::write(Ostream& os) const { directionMixedFvPatchVectorField::write(os); os.writeKeyword("cohesiveLaw") << law().type() << token::END_STATEMENT << nl; os.writeKeyword("relaxationFactor") << relaxationFactor_ << token::END_STATEMENT << nl; law().writeDict(os); } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // makePatchTypeField(fvPatchVectorField, cohesiveZoneFvPatchVectorField); // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // } // End namespace Foam // ************************************************************************* //