/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 4.0
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see .
Application
applyBoundaryLayer
Description
Apply a simplified boundary-layer model to the velocity and
turbulence fields based on the 1/7th power-law.
The uniform boundary-layer thickness is either provided via the -ybl option
or calculated as the average of the distance to the wall scaled with
the thickness coefficient supplied via the option -Cbl. If both options
are provided -ybl is used.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "wallDist.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::validOptions.insert("ybl", "scalar");
argList::validOptions.insert("Cbl", "scalar");
argList::validOptions.insert("writenut", "");
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
mesh
);
# include "createPhi.H"
Info<< "Calculating wall distance field" << endl;
volScalarField y = wallDist(mesh).y();
// Set the mean boundary-layer thickness
dimensionedScalar ybl("ybl", dimLength, 0);
if (args.optionFound("ybl"))
{
// If the boundary-layer thickness is provided use it
ybl.value() = args.optionRead("ybl");
}
else if (args.optionFound("Cbl"))
{
// Calculate boundary layer thickness as Cbl * mean distance to wall
ybl.value() = gAverage(y) * args.optionRead("Cbl");
}
else
{
FatalErrorIn(args.executable())
<< "Neither option 'ybl' or 'Cbl' have been provided to calculate"
" the boundary-layer thickness"
<< exit(FatalError);
}
Info<< "\nCreating boundary-layer for U of thickness "
<< ybl.value() << " m" << nl << endl;
// Modify velocity by applying a 1/7th power law boundary-layer
// u/U0 = (y/ybl)^(1/7)
// assumes U0 is the same as the current cell velocity
scalar yblv = ybl.value();
forAll(U, celli)
{
if (y[celli] <= yblv)
{
U[celli] *= ::pow(y[celli]/yblv, (1.0/7.0));
}
}
Info<< "Writing U" << endl;
U.write();
// Update/re-write phi
phi = fvc::interpolate(U) & mesh.Sf();
phi.write();
// Set turbulence constants
dimensionedScalar kappa("kappa", dimless, 0.41);
dimensionedScalar Cmu("Cmu", dimless, 0.09);
// Read and modify turbulence fields if present
IOobject epsilonHeader
(
"epsilon",
runTime.timeName(),
mesh,
IOobject::MUST_READ
);
IOobject kHeader
(
"k",
runTime.timeName(),
mesh,
IOobject::MUST_READ
);
IOobject nuTildaHeader
(
"nuTilda",
runTime.timeName(),
mesh,
IOobject::MUST_READ
);
// First calculate nut
volScalarField nut
(
"nut",
sqr(kappa*min(y, ybl))*::sqrt(2)*mag(dev(symm(fvc::grad(U))))
);
if (args.optionFound("writenut"))
{
Info<< "Writing nut" << endl;
nut.write();
}
// Read and modify turbulence fields if present
if (nuTildaHeader.headerOk())
{
Info<< "Reading field nuTilda\n" << endl;
volScalarField nuTilda(nuTildaHeader, mesh);
nuTilda = nut;
nuTilda.correctBoundaryConditions();
Info<< "Writing nuTilda\n" << endl;
nuTilda.write();
}
if (kHeader.headerOk() && epsilonHeader.headerOk())
{
Info<< "Reading field k\n" << endl;
volScalarField k(kHeader, mesh);
Info<< "Reading field epsilon\n" << endl;
volScalarField epsilon(epsilonHeader, mesh);
scalar ck0 = ::pow(Cmu.value(), 0.25)*kappa.value();
k = sqr(nut/(ck0*min(y, ybl)));
k.correctBoundaryConditions();
scalar ce0 = ::pow(Cmu.value(), 0.75)/kappa.value();
epsilon = ce0*k*sqrt(k)/min(y, ybl);
epsilon.correctBoundaryConditions();
Info<< "Writing k\n" << endl;
k.write();
Info<< "Writing epsilon\n" << endl;
epsilon.write();
}
Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //