{ volScalarField rUA("rUA", 1.0/UEqn().A()); surfaceScalarField rUAf("(1|A(U))", fvc::interpolate(rUA)); U = rUA*UEqn().H(); UEqn.clear(); phi = fvc::interpolate(U) & mesh.Sf(); adjustPhi(phi, U, p_rgh); surfaceScalarField buoyancyPhi(rUAf*ghf*fvc::snGrad(rhok)*mesh.magSf()); phi -= buoyancyPhi; for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++) { fvScalarMatrix p_rghEqn ( fvm::laplacian(rUAf, p_rgh) == fvc::div(phi) ); p_rghEqn.setReference(pRefCell, pRefValue); // retain the residual from the first iteration if (nonOrth == 0) { eqnResidual = p_rghEqn.solve().initialResidual(); maxResidual = max(eqnResidual, maxResidual); } else { p_rghEqn.solve(); } if (nonOrth == nNonOrthCorr) { // Calculate the conservative fluxes phi -= p_rghEqn.flux(); // Explicitly relax pressure for momentum corrector p_rgh.relax(); // Correct the momentum source with the pressure gradient flux // calculated from the relaxed pressure U -= rUA*fvc::reconstruct((buoyancyPhi + p_rghEqn.flux())/rUAf); U.correctBoundaryConditions(); } } #include "continuityErrs.H" }