/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 4.0
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see .
Application
potentialDyMFoam
Description
Transient solver for potential flow with dynamic mesh.
Author
Hrvoje Jasak, Wikki Ltd. All rights reserved.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "pisoControl.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::validOptions.insert("resetU", "");
argList::validOptions.insert("writep", "");
# include "setRootCase.H"
# include "createTime.H"
# include "createDynamicFvMesh.H"
pisoControl piso(mesh);
# include "createFields.H"
# include "initTotalVolume.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.loop())
{
# include "checkTotalVolume.H"
Info<< "Time = " << runTime.timeName() << nl << endl;
bool meshChanged = mesh.update();
reduce(meshChanged, orOp());
p.internalField() = 0;
if (args.optionFound("resetU"))
{
U.internalField() = vector::zero;
}
# include "volContinuity.H"
# include "meshCourantNo.H"
// Solve potential flow equations
adjustPhi(phi, U, p);
while (piso.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvm::laplacian
(
dimensionedScalar
(
"1",
dimTime/p.dimensions()*dimensionSet(0, 2, -2, 0, 0),
1
),
p
)
==
fvc::div(phi)
);
pEqn.setReference(pRefCell, pRefValue);
pEqn.solve();
if (piso.finalNonOrthogonalIter())
{
phi -= pEqn.flux();
}
else
{
p.relax();
}
}
Info<< "continuity error = "
<< mag(fvc::div(phi))().weightedAverage(mesh.V()).value()
<< endl;
U = fvc::reconstruct(phi);
U.correctBoundaryConditions();
Info<< "Interpolated U error = "
<< (sqrt(sum(sqr((fvc::interpolate(U) & mesh.Sf()) - phi)))
/sum(mesh.magSf())).value()
<< endl;
// Calculate velocity magnitude
{
volScalarField magU = mag(U);
Info<< "mag(U): max: " << gMax(magU.internalField())
<< " min: " << gMin(magU.internalField()) << endl;
}
if (args.optionFound("writep"))
{
// Find reference patch
label refPatch = -1;
scalar maxMagU = 0;
// Go through all velocity patches and find the one that fixes
// velocity to the largest value
forAll (U.boundaryField(), patchI)
{
const fvPatchVectorField& Upatch = U.boundaryField()[patchI];
if (Upatch.fixesValue())
{
// Calculate mean velocity
scalar u = sum(mag(Upatch));
label patchSize = Upatch.size();
reduce(u, sumOp());
reduce(patchSize, sumOp