/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 4.0
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see .
\*---------------------------------------------------------------------------*/
#include "mirrorFvMesh.H"
#include "foamTime.H"
#include "plane.H"
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::mirrorFvMesh::mirrorFvMesh(const IOobject& io)
:
fvMesh(io),
mirrorMeshDict_
(
IOobject
(
"mirrorMeshDict",
time().system(),
*this,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
),
mirrorMeshPtr_(NULL)
{
plane mirrorPlane(mirrorMeshDict_);
scalar planeTolerance
(
readScalar(mirrorMeshDict_.lookup("planeTolerance"))
);
const pointField& oldPoints = points();
const faceList& oldFaces = faces();
const cellList& oldCells = cells();
const label nOldInternalFaces = nInternalFaces();
const polyPatchList& oldPatches = boundaryMesh();
// Mirror the points
Info << "Mirroring points. Old points: " << oldPoints.size();
pointField newPoints(2*oldPoints.size());
label nNewPoints = 0;
labelList mirrorPointLookup(oldPoints.size(), -1);
// Grab the old points
forAll (oldPoints, pointI)
{
newPoints[nNewPoints] = oldPoints[pointI];
nNewPoints++;
}
forAll (oldPoints, pointI)
{
scalar alpha =
mirrorPlane.normalIntersect
(
oldPoints[pointI],
mirrorPlane.normal()
);
// Check plane on tolerance
if (mag(alpha) > planeTolerance)
{
// The point gets mirrored
newPoints[nNewPoints] =
oldPoints[pointI] + 2.0*alpha*mirrorPlane.normal();
// remember the point correspondence
mirrorPointLookup[pointI] = nNewPoints;
nNewPoints++;
}
else
{
// The point is on the plane and does not get mirrored
// Adjust plane location
newPoints[nNewPoints] =
oldPoints[pointI] + alpha*mirrorPlane.normal();
mirrorPointLookup[pointI] = pointI;
}
}
// Reset the size of the point list
Info << " New points: " << nNewPoints << endl;
newPoints.setSize(nNewPoints);
Info << "Mirroring faces. Old faces: " << oldFaces.size();
// Algorithm:
// During mirroring, the faces that were previously boundary faces
// in the mirror plane may become internal faces. In order to
// deal with the ordering of the faces, the algorithm is split
// into two parts. For original faces, the internal faces are
// distributed to their owner cells. Once all internal faces are
// distributed, the boundary faces are visited and if they are in
// the mirror plane they are added to the master cells (the future
// boundary faces are not touched). After the first phase, the
// internal faces are collected in the cell order and numbering
// information is added. Then, the internal faces are mirrored
// and the face numbering data is stored for the mirrored section.
// Once all the internal faces are mirrored, the boundary faces
// are added by mirroring the faces patch by patch.
// Distribute internal faces
labelListList newCellFaces(oldCells.size());
const unallocLabelList& oldOwnerStart = lduAddr().ownerStartAddr();
forAll (newCellFaces, cellI)
{
labelList& curFaces = newCellFaces[cellI];
const label s = oldOwnerStart[cellI];
const label e = oldOwnerStart[cellI + 1];
curFaces.setSize(e - s);
forAll (curFaces, i)
{
curFaces[i] = s + i;
}
}
// Distribute boundary faces. Remember the faces that have been inserted
// as internal
boolListList insertedBouFace(oldPatches.size());
forAll (oldPatches, patchI)
{
const polyPatch& curPatch = oldPatches[patchI];
if (curPatch.coupled())
{
WarningIn("mirrorFvMesh::mirrorFvMesh(const IOobject&)")
<< "Found coupled patch " << curPatch.name() << endl
<< " Mirroring faces on coupled patches destroys"
<< " the ordering. This might be fixed by running a dummy"
<< " createPatch afterwards." << endl;
}
boolList& curInsBouFace = insertedBouFace[patchI];
curInsBouFace.setSize(curPatch.size());
curInsBouFace = false;
// Get faceCells for face insertion
const unallocLabelList& curFaceCells = curPatch.faceCells();
const label curStart = curPatch.start();
forAll (curPatch, faceI)
{
// Find out if the mirrored face is identical to the
// original. If so, the face needs to become internal and
// added to its owner cell
const face& origFace = curPatch[faceI];
face mirrorFace(origFace.size());
forAll (mirrorFace, pointI)
{
mirrorFace[pointI] = mirrorPointLookup[origFace[pointI]];
}
if (origFace == mirrorFace)
{
// The mirror is identical to current face. This will
// become an internal face
const label oldSize = newCellFaces[curFaceCells[faceI]].size();
newCellFaces[curFaceCells[faceI]].setSize(oldSize + 1);
newCellFaces[curFaceCells[faceI]][oldSize] = curStart + faceI;
curInsBouFace[faceI] = true;
}
}
}
// Construct the new list of faces. Boundary faces are added
// last, cush that each patch is mirrored separately. The
// addressing is stored in two separate arrays: first for the
// original cells (face order has changed) and then for the
// mirrored cells.
labelList masterFaceLookup(oldFaces.size(), -1);
labelList mirrorFaceLookup(oldFaces.size(), -1);
faceList newFaces(2*oldFaces.size());
label nNewFaces = 0;
// Insert original (internal) faces
forAll (newCellFaces, cellI)
{
const labelList& curCellFaces = newCellFaces[cellI];
forAll (curCellFaces, cfI)
{
newFaces[nNewFaces] = oldFaces[curCellFaces[cfI]];
masterFaceLookup[curCellFaces[cfI]] = nNewFaces;
nNewFaces++;
}
}
// Mirror internal faces
for (label faceI = 0; faceI < nOldInternalFaces; faceI++)
{
const face& oldFace = oldFaces[faceI];
face& nf = newFaces[nNewFaces];
nf.setSize(oldFace.size());
nf[0] = mirrorPointLookup[oldFace[0]];
for (label i = 1; i < oldFace.size(); i++)
{
nf[i] = mirrorPointLookup[oldFace[oldFace.size() - i]];
}
mirrorFaceLookup[faceI] = nNewFaces;
nNewFaces++;
}
// Mirror boundary faces patch by patch
wordList newPatchTypes(boundary().size());
wordList newPatchNames(boundary().size());
labelList newPatchSizes(boundary().size(), -1);
labelList newPatchStarts(boundary().size(), -1);
label nNewPatches = 0;
forAll (boundaryMesh(), patchI)
{
const label curPatchSize = boundaryMesh()[patchI].size();
const label curPatchStart = boundaryMesh()[patchI].start();
const boolList& curInserted = insertedBouFace[patchI];
newPatchStarts[nNewPatches] = nNewFaces;
// Master side
for (label faceI = 0; faceI < curPatchSize; faceI++)
{
// Check if the face has already been added. If not, add it and
// insert the numbering details.
if (!curInserted[faceI])
{
newFaces[nNewFaces] = oldFaces[curPatchStart + faceI];
masterFaceLookup[curPatchStart + faceI] = nNewFaces;
nNewFaces++;
}
}
// Mirror side
for (label faceI = 0; faceI < curPatchSize; faceI++)
{
// Check if the face has already been added. If not, add it and
// insert the numbering details.
if (!curInserted[faceI])
{
const face& oldFace = oldFaces[curPatchStart + faceI];
face& nf = newFaces[nNewFaces];
nf.setSize(oldFace.size());
nf[0] = mirrorPointLookup[oldFace[0]];
for (label i = 1; i < oldFace.size(); i++)
{
nf[i] = mirrorPointLookup[oldFace[oldFace.size() - i]];
}
mirrorFaceLookup[curPatchStart + faceI] = nNewFaces;
nNewFaces++;
}
else
{
// Grab the index of the master face for the mirror side
mirrorFaceLookup[curPatchStart + faceI] =
masterFaceLookup[curPatchStart + faceI];
}
}
// If patch exists, grab the name and type of the original patch
if (nNewFaces > newPatchStarts[nNewPatches])
{
newPatchTypes[nNewPatches] = boundaryMesh()[patchI].type();
newPatchNames[nNewPatches] = boundaryMesh()[patchI].name();
newPatchSizes[nNewPatches] =
nNewFaces - newPatchStarts[nNewPatches];
nNewPatches++;
}
}
// Tidy up the lists
newFaces.setSize(nNewFaces);
Info << " New faces: " << nNewFaces << endl;
newPatchTypes.setSize(nNewPatches);
newPatchNames.setSize(nNewPatches);
newPatchSizes.setSize(nNewPatches);
newPatchStarts.setSize(nNewPatches);
Info << "Mirroring patches. Old patches: " << boundary().size()
<< " New patches: " << nNewPatches << endl;
Info<< "Mirroring cells. Old cells: " << oldCells.size()
<< " New cells: " << 2*oldCells.size() << endl;
cellList newCells(2*oldCells.size());
label nNewCells = 0;
// Grab the original cells. Take care of face renumbering.
forAll (oldCells, cellI)
{
const cell& oc = oldCells[cellI];
cell& nc = newCells[nNewCells];
nc.setSize(oc.size());
forAll (oc, i)
{
nc[i] = masterFaceLookup[oc[i]];
}
nNewCells++;
}
// Mirror the cells
forAll (oldCells, cellI)
{
const cell& oc = oldCells[cellI];
cell& nc = newCells[nNewCells];
nc.setSize(oc.size());
forAll (oc, i)
{
nc[i] = mirrorFaceLookup[oc[i]];
}
nNewCells++;
}
// Mirror the cell shapes
Info << "Mirroring cell shapes." << endl;
Info << nl << "Creating new mesh" << endl;
mirrorMeshPtr_ = new fvMesh
(
io,
xferMove(newPoints),
xferMove(newFaces),
xferMove(newCells)
);
fvMesh& pMesh = *mirrorMeshPtr_;
// Add the boundary patches
List p(newPatchTypes.size());
forAll (p, patchI)
{
p[patchI] = polyPatch::New
(
newPatchTypes[patchI],
newPatchNames[patchI],
newPatchSizes[patchI],
newPatchStarts[patchI],
patchI,
pMesh.boundaryMesh()
).ptr();
}
pMesh.addPatches(p);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::mirrorFvMesh::~mirrorFvMesh()
{}
// ************************************************************************* //