{ volScalarField rUA = 1.0/UEqn.A(); surfaceScalarField rUAf = fvc::interpolate(rUA); U = rUA*UEqn.H(); surfaceScalarField phiU ( "phiU", (fvc::interpolate(U) & mesh.Sf()) //+ fvc::ddtPhiCorr(rUA, rho, U, phi) ); mrfZones.relativeFlux(phiU); phi = phiU + ( fvc::interpolate(interface.sigmaK())* fvc::snGrad(alpha1)*mesh.magSf() + fvc::interpolate(rho)*(g & mesh.Sf()) )*rUAf; adjustPhi(phi, U, p); for(int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++) { fvScalarMatrix pdEqn ( fvm::laplacian(rUAf, pd) == fvc::div(phi) ); pdEqn.setReference(pdRefCell, pdRefValue); if (corr == nCorr-1 && nonOrth == nNonOrthCorr) { pdEqn.solve(mesh.solutionDict().solver(pd.name() + "Final")); } else { pdEqn.solve(mesh.solutionDict().solver(pd.name())); } if (nonOrth == nNonOrthCorr) { phi -= pdEqn.flux(); } } U += rUA*fvc::reconstruct((phi - phiU)/rUAf); U.correctBoundaryConditions(); }