{ volScalarField rUA = 1.0/UEqn.A(); surfaceScalarField rUAf = fvc::interpolate(rUA); U = rUA*UEqn.H(); surfaceScalarField phiU ( "phiU", (fvc::interpolate(U) & mesh.Sf()) + fvc::ddtPhiCorr(rUA, rho, U, phi) ); adjustPhi(phiU, U, p); phi = phiU + ( fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1) - ghf*fvc::snGrad(rho) )*rUAf*mesh.magSf(); Pair > vDotP = twoPhaseProperties->vDotP(); const volScalarField& vDotcP = vDotP[0](); const volScalarField& vDotvP = vDotP[1](); for(int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++) { fvScalarMatrix pdEqn ( fvc::div(phi) - fvm::laplacian(rUAf, pd) + (vDotvP - vDotcP)*(rho*gh - pSat) + fvm::Sp(vDotvP - vDotcP, pd) ); pdEqn.setReference(pdRefCell, pdRefValue); if (corr == nCorr-1 && nonOrth == nNonOrthCorr) { pdEqn.solve(mesh.solutionDict().solver(pd.name() + "Final")); } else { pdEqn.solve(mesh.solutionDict().solver(pd.name())); } if (nonOrth == nNonOrthCorr) { phi += pdEqn.flux(); } } p = pd + rho*gh; U += rUA*fvc::reconstruct((phi - phiU)/rUAf); U.correctBoundaryConditions(); }