/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | foam-extend: Open Source CFD \\ / O peration | Version: 3.2 \\ / A nd | Web: http://www.foam-extend.org \\/ M anipulation | For copyright notice see file Copyright ------------------------------------------------------------------------------- License This file is part of foam-extend. foam-extend is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. foam-extend is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with foam-extend. If not, see . Application potentialIbFoam Description Potential flow solver with immersed boundary support. \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "immersedBoundaryFvPatch.H" #include "immersedBoundaryAdjustPhi.H" #include "simpleControl.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { argList::validOptions.insert("writep", ""); # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" simpleControl simple(mesh); # include "createIbMasks.H" # include "createFields.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info<< nl << "Calculating potential flow" << endl; // Do correctors over the complete set while (simple.correctNonOrthogonal()) { phi = faceIbMask*(linearInterpolate(U) & mesh.Sf()); // Adjust immersed boundary fluxes immersedBoundaryAdjustPhi(phi, U); // Adjust fluxes adjustPhi(phi, U, p); p.storePrevIter(); fvScalarMatrix pEqn ( fvm::laplacian ( dimensionedScalar ( "1", dimTime/p.dimensions()*dimensionSet(0, 2, -2, 0, 0), 1 ), p ) == fvc::div(phi) ); pEqn.setReference(pRefCell, pRefValue); pEqn.solve(); // Correct the flux phi -= pEqn.flux(); if (!simple.finalNonOrthogonalIter()) { p.relax(); } Info<< "p min " << gMin(p.internalField()) << " max " << gMax(p.internalField()) << " masked min " << gMin(cellIbMask.internalField()*p.internalField()) << " max " << gMax(cellIbMask.internalField()*p.internalField()) << endl; Info<< "continuity error = " << mag ( fvc::div(faceIbMask*phi) )().weightedAverage(mesh.V()).value() << endl; Info<< "Contour continuity error = " << mag(sum(phi.boundaryField())) << endl; U = fvc::reconstruct(phi); U.correctBoundaryConditions(); Info<< "Interpolated U error = " << ( sqrt ( sum ( sqr ( faceIbMask* ( fvc::interpolate(U) & mesh.Sf() ) - phi ) ) )/sum(mesh.magSf()) ).value() << endl; } // Calculate velocity magnitude { volScalarField magU = cellIbMask*mag(U); Info << "IB-masked mag(U): max: " << gMax(magU.internalField()) << " min: " << gMin(magU.internalField()) << endl; } // Force the write U.write(); phi.write(); cellIbMask.write(); cellIbMaskExt.write(); if (args.optionFound("writep")) { // Find reference patch label refPatch = -1; scalar maxMagU = 0; // Go through all velocity patches and find the one that fixes // velocity to the largest value forAll (U.boundaryField(), patchI) { const fvPatchVectorField& Upatch = U.boundaryField()[patchI]; if (Upatch.fixesValue()) { // Calculate mean velocity scalar u = sum(mag(Upatch)); label patchSize = Upatch.size(); reduce(u, sumOp()); reduce(patchSize, sumOp