/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | foam-extend: Open Source CFD \\ / O peration | Version: 3.2 \\ / A nd | Web: http://www.foam-extend.org \\/ M anipulation | For copyright notice see file Copyright ------------------------------------------------------------------------------- License This file is part of foam-extend. foam-extend is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. foam-extend is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with foam-extend. If not, see . Application elasticOrthoAcpSolidFoam Description Arbitrary crack propagation (ACP) solver allowing orthotropic material properties. Please cite: Cardiff P, Karac A & Ivankovic A, A Large Strain Finite Volume Method for Orthotropic Bodies with General Material Orientations, Computer Methods in Applied Mechanics & Engineering, Sep 2013, http://dx.doi.org/10.1016/j.cma.2013.09.008. Carolan D, Tuković Z, Murphy N, Ivankovic A, Arbitrary crack propagation in multi-phase materials using the finite volume method, Computational Materials Science, 2013, http://dx.doi.org/10.1016/j.commatsci.2012.11.049. Author Philip Cardiff UCD ACP by Tukovic FSB and Carolan UCD \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "constitutiveModel.H" //#include "componentReferenceList.H" #include "crackerFvMesh.H" #include "processorPolyPatch.H" #include "SortableList.H" #include "solidInterface.H" #include "solidCohesiveFvPatchVectorField.H" #include "solidCohesiveFixedModeMixFvPatchVectorField.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createCrackerMesh.H" # include "createFields.H" # include "createCrack.H" //# include "createReference.H" # include "createHistory.H" # include "readDivSigmaExpMethod.H" # include "createSolidInterfaceNoModify.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info<< "\nStarting time loop\n" << endl; lduMatrix::debug = 0; scalar maxEffTractionFraction = 0; // time rates for predictor volTensorField gradV = fvc::ddt(gradU); surfaceVectorField snGradV = (snGradU - snGradU.oldTime())/runTime.deltaT(); //# include "initialiseSolution.H" while (runTime.run()) { # include "readSolidMechanicsControls.H" # include "setDeltaT.H" runTime++; Info<< "\nTime: " << runTime.timeName() << " s\n" << endl; volScalarField rho = rheology.rho(); volDiagTensorField K = rheology.K(); surfaceDiagTensorField Kf = fvc::interpolate(K, "K"); volSymmTensor4thOrderField C = rheology.C(); surfaceSymmTensor4thOrderField Cf = fvc::interpolate(C, "C"); solidInterfacePtr->modifyProperties(Cf, Kf); //# include "waveCourantNo.H" int iCorr = 0; lduMatrix::solverPerformance solverPerf; scalar initialResidual = 0; scalar relativeResidual = 1; //scalar forceResidual = 1; label nFacesToBreak = 0; label nCoupledFacesToBreak = 0; bool topoChange = false; //bool noMoreCracks = false; // Predictor step using time rates if (predictor) { Info << "Predicting U, gradU and snGradU using velocity" << endl; U += V*runTime.deltaT(); gradU += gradV*runTime.deltaT(); snGradU += snGradV*runTime.deltaT(); } do { surfaceVectorField n = mesh.Sf()/mesh.magSf(); do { U.storePrevIter(); # include "calculateDivSigmaExp.H" fvVectorMatrix UEqn ( rho*fvm::d2dt2(U) == fvm::laplacian(Kf, U, "laplacian(K,U)") + divSigmaExp ); //# include "setReference.H" if(solidInterfacePtr) { solidInterfacePtr->correct(UEqn); } if (relaxEqn) { UEqn.relax(); } solverPerf = UEqn.solve(); if (aitkenRelax) { # include "aitkenRelaxation.H" } else { U.relax(); } if (iCorr == 0) { initialResidual = solverPerf.initialResidual(); aitkenInitialRes = gMax(mag(U.internalField())); } //gradU = solidInterfacePtr->grad(U); // use leastSquaresSolidInterface grad scheme gradU = fvc::grad(U); # include "calculateRelativeResidual.H" if (iCorr % infoFrequency == 0) { Info << "\tTime " << runTime.value() << ", Corr " << iCorr << ", Solving for " << U.name() << " using " << solverPerf.solverName() << ", res = " << solverPerf.initialResidual() << ", rel res = " << relativeResidual; if (aitkenRelax) { Info << ", aitken = " << aitkenTheta; } Info << ", inner iters " << solverPerf.nIterations() << endl; } } while ( //iCorr++ == 0 iCorr++ < 10 || ( //solverPerf.initialResidual() > convergenceTolerance relativeResidual > convergenceTolerance && iCorr < nCorr ) ); Info<< "Solving for " << U.name() << " using " << solverPerf.solverName() << ", Initial residual = " << initialResidual << ", Final residual = " << solverPerf.initialResidual() << ", No outer iterations " << iCorr << ", Relative residual " << relativeResidual << endl; # include "calculateTraction.H" # include "updateCrack.H" Info << "Max effective traction fraction: " << maxEffTractionFraction << endl; // reset counter if faces want to crack if ((nFacesToBreak > 0) || (nCoupledFacesToBreak > 0)) iCorr = 0; } while( (nFacesToBreak > 0) || (nCoupledFacesToBreak > 0)); if (cohesivePatchUPtr) { if (returnReduce(cohesivePatchUPtr->size(), sumOp