{ volScalarField rUA("rUA", 1.0/UEqn().A()); surfaceScalarField rUAf("(1|A(U))", fvc::interpolate(rUA)); U = rUA*UEqn().H(); UEqn.clear(); phi = fvc::interpolate(U) & mesh.Sf(); adjustPhi(phi, U, p); surfaceScalarField buoyancyPhi = rUAf*fvc::interpolate(rhok)*(g & mesh.Sf()); phi += buoyancyPhi; for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++) { fvScalarMatrix pEqn ( fvm::laplacian(rUAf, p) == fvc::div(phi) ); pEqn.setReference(pRefCell, pRefValue); // retain the residual from the first iteration if (nonOrth == 0) { eqnResidual = pEqn.solve().initialResidual(); maxResidual = max(eqnResidual, maxResidual); } else { pEqn.solve(); } if (nonOrth == nNonOrthCorr) { // Calculate the conservative fluxes phi -= pEqn.flux(); // Explicitly relax pressure for momentum corrector p.relax(); // Correct the momentum source with the pressure gradient flux // calculated from the relaxed pressure U += rUA*fvc::reconstruct((buoyancyPhi - pEqn.flux())/rUAf); U.correctBoundaryConditions(); } } #include "continuityErrs.H" }