/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright held by original author \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Application mhdFoam Description Solver for magnetohydrodynamics (MHD): incompressible, laminar flow of a conducting fluid under the influence of a magnetic field. An applied magnetic field H acts as a driving force, at present boundary conditions cannot be set via the electric field E or current density J. The fluid viscosity nu, conductivity sigma and permeability mu are read in as uniform constants. A fictitous magnetic flux pressure pH is introduced in order to compensate for discretisation errors and create a magnetic face flux field which is divergence free as required by Maxwell's equations. However, in this formulation discretisation error prevents the normal stresses in UB from cancelling with those from BU, but it is unknown whether this is a serious error. A correction could be introduced whereby the normal stresses in the discretised BU term are replaced by those from the UB term, but this would violate the boundedness constraint presently observed in the present numerics which guarantees div(U) and div(H) are zero. \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "OSspecific.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" # include "createFields.H" # include "initContinuityErrs.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info<< nl << "Starting time loop" << endl; while (runTime.loop()) { # include "readPISOControls.H" # include "readBPISOControls.H" Info<< "Time = " << runTime.timeName() << nl << endl; # include "CourantNo.H" { fvVectorMatrix UEqn ( fvm::ddt(U) + fvm::div(phi, U) - fvc::div(phiB, 2.0*DBU*B) - fvm::laplacian(nu, U) + fvc::grad(DBU*magSqr(B)) ); solve(UEqn == -fvc::grad(p)); // --- PISO loop for (int corr = 0; corr < nCorr; corr++) { volScalarField rUA = 1.0/UEqn.A(); U = rUA*UEqn.H(); phi = (fvc::interpolate(U) & mesh.Sf()) + fvc::ddtPhiCorr(rUA, U, phi); for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++) { fvScalarMatrix pEqn ( fvm::laplacian(rUA, p) == fvc::div(phi) ); pEqn.setReference(pRefCell, pRefValue); pEqn.solve(); if (nonOrth == nNonOrthCorr) { phi -= pEqn.flux(); } } # include "continuityErrs.H" U -= rUA*fvc::grad(p); U.correctBoundaryConditions(); } } // --- B-PISO loop for (int Bcorr=0; Bcorr