/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 2004-6 H. Jasak All rights reserved \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Application viscoElasticStressedFoam Description Transient/steady-state segregated finite-volume solver for small strain visco elastic solid bodies. Displacement increment field DU is solved for using a total Lagrangian approach, also generating the strain tensor field epsilon and stress tensor field sigma. \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "rheologyModel.H" #include "OFstream.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" # include "createFields.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info<< "\nCalculating displacement field\n" << endl; lduMatrix::debug = 0; scalar m = 0.5; for (runTime++; !runTime.end(); runTime++) { Info<< "Time: " << runTime.timeName() << nl << endl; # include "readStressedFoamControls.H" volScalarField mu = rheology.mu(m*runTime.deltaT().value()); volScalarField lambda = rheology.lambda(m*runTime.deltaT().value()); Info << "mu = " << average(mu.internalField()) << endl; Info << "lambda = " << average(lambda.internalField()) << endl; int iCorr = 0; lduMatrix::solverPerformance solverPerf; scalar initialResidual = 0; scalar residual = GREAT; do { DU.storePrevIter(); fvVectorMatrix DUEqn ( fvm::d2dt2(rho,DU) == fvm::laplacian(2*mu+lambda, DU, "laplacian(DDU,DU)") + fvc::div ( mu*gradDU.T() + lambda*(I*tr(gradDU)) - (mu + lambda)*gradDU + DSigmaCorr, "div(sigma)" ) ); solverPerf = DUEqn.solve(); DU.relax(); if(iCorr == 0) { initialResidual = solverPerf.initialResidual(); } gradDU = fvc::grad(DU); # include "calculateDEpsilonDSigma.H" } while ( solverPerf.initialResidual() > convergenceTolerance && ++iCorr < nCorr ); Info << "Solving for " << DU.name() << " using " << solverPerf.solverName() << " solver" << ", Initial residual = " << initialResidual << ", Final residual = " << solverPerf.initialResidual() << ", No outer iterations " << iCorr << ", Relative error: " << residual << endl; U += DU; epsilon += DEpsilon; # include "calculateSigmaDSigmaCorr.H" # include "writeFields.H" Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s\n\n" << endl; } Info<< "End\n" << endl; return(0); } // ************************************************************************* //