Update in fvcReconstruct to enable hinv

Reconstruction equation reformulated in a way such that the inverse is always
calculated for a dimensionless dyadic tensor (Sf*Sf/magSf^2) instead of one that
scales with magSf (Sf*Sf/magSf). This proved to be problematic when we had
extremely small cells which triggered the calculation of inverse using
Householder's method.
This commit is contained in:
Vuko Vukcevic 2019-06-13 11:10:32 +02:00
parent 43080d7042
commit ce6f4f6473

View file

@ -76,34 +76,66 @@ reconstruct
GeometricField<GradType, fvPatchField, volMesh>& reconField =
treconField();
// Note:
// 1) Reconstruction is only available in cell centres: there is no need
// Notes regarding boundary:
// 1. Reconstruction is only available in cell centres: there is no need
// to invert the tensor on the boundary
// 2) For boundaries, the only reconstructed data is the flux times
// normal. Based on this guess, boundary conditions can adjust
// patch values
// HJ, 12/Aug/2011
// 2. For boundaries, the only reconstructed data is the flux times
// normal. Based on this guess, boundary conditions can adjust
// patch values. HJ, 12/Aug/2011
GeometricField<GradType, fvPatchField, volMesh> fluxTimesNormal =
surfaceSum((mesh.Sf()/mesh.magSf())*ssf);
// Notes regarding procedure:
// 1. hinv inverse must be used to stabilise the inverse on bad meshes
// but it gives strange failures because it unnecessarily avoids
// performing ordinary inverse for meshes with reasonably sized
// determinant (e.g. if SfSf/magSf is small). HJ, 19/Aug/2015
// 2. hinv has been stabilised now. HJ, 22/Mar/2019
// 3. But we still need to make sure that the determinant is not extremely
// small, which may happen for extremely small meshes. We avoid this
// issue by dividing the reconstruction equation with magSf^2 (instead of
// magSf), which basically makes the dyadic tensor that we need to invert
// dimensionless. VV, 13/Jun/2019
// Note: hinv inverse must be used to stabilise the inverse on bad meshes
// but it gives strange failures. Fixed hinv. HJ, 22/Mar/2019
// HJ, 19/Aug/2015
// Temporarily reverting hinv: Vuko Vukcevic, 6/Jun/2019
// Here's a short derivation in a Latex--like notation, where:
// - Sf is the surface area vector
// - uf is the face velocity factor (or field to be reconstructed)
// - Ff is the face flux
// - magSf is the magnitude of the surface area vector
// - uP is the velocity field in the cell centre
// - G is the surface area dyadic tensor
// - Fn is the vector representing surface sum of directional fluxes
// - \dprod is a dot product
// 1. Sf \dprod uf = Ff
// Multiply Eq (1) with Sf/magSf^2
// 2. \frac{Sf Sf}{magSf^2} \dprod uf = \frac{Sf Ff}{magSf^2}
// Sum Eq (2) over all the faces
// 3. \sum_f(\frac{Sf Sf}{magSf^2} \dprod uf) = \sum_f(\frac{Sf Ff}{magSf^2})
// Assume first order extrapolation of uf, e.g. uP = uf
// 4. \sum_f(\frac{Sf Sf}{magSf^2}) \dprod uP) = \sum_f(\frac{Sf Ff}{magSf^2})
// Use shorthand notation
// 5. G \dprod uP = Fn
// 6. uP = G^-1 \dprod Fn
// Fn -> fluxTimesNormal
// G -> G
// Calculate sum of the directional fluxes
const surfaceScalarField magSfSqr = sqr(mesh.magSf());
const GeometricField<GradType, fvPatchField, volMesh> fluxTimesNormal =
surfaceSum((mesh.Sf()/magSfSqr)*ssf);
// Calculate the G tensor
const volSymmTensorField G = surfaceSum(sqr(mesh.Sf())/magSfSqr);
// Finally calculate the reconstructed field using hinv for stabilisation on
// really bad fvMesh bits (uses ordinary inverse most of the time, see
// tensor.C)
reconField.internalField() =
(
// hinv
inv
(
surfaceSum(sqr(mesh.Sf())/mesh.magSf())().internalField()
)
& fluxTimesNormal.internalField()
);
hinv(G.internalField()) & fluxTimesNormal.internalField();
// Boundary value update
reconField.boundaryField() = fluxTimesNormal.boundaryField();
treconField().correctBoundaryConditions();
reconField.correctBoundaryConditions();
return treconField;
}