diff --git a/applications/solvers/incompressible/channelFoam/channelFoam.C b/applications/solvers/incompressible/channelFoam/channelFoam.C index 740370230..2bf2783b2 100644 --- a/applications/solvers/incompressible/channelFoam/channelFoam.C +++ b/applications/solvers/incompressible/channelFoam/channelFoam.C @@ -26,7 +26,8 @@ Application Description Incompressible LES solver for flow in a channel. - Consistent formulation without time-step and relaxation dependence by Jasak + Consistent formulation without time-step and relaxation dependence by + Jasak and Tukovic. Author Hrvoje Jasak, Wikki Ltd. All rights reserved @@ -66,6 +67,9 @@ int main(int argc, char *argv[]) sgsModel->correct(); + // Time derivative matrix + fvVectorMatrix ddtUEqn(fvm::ddt(U)); + // Convection-diffusion matrix fvVectorMatrix HUEqn ( @@ -75,24 +79,23 @@ int main(int argc, char *argv[]) flowDirection*gradP ); - // Time derivative matrix - fvVectorMatrix ddtUEqn(fvm::ddt(U)); - if (piso.momentumPredictor()) { solve(ddtUEqn + HUEqn == -fvc::grad(p)); } - // Prepare clean Ap without time derivative contribution - // HJ, 26/Oct/2015 - volScalarField aU = HUEqn.A(); + // Prepare clean 1/a_p without time derivative contribution + volScalarField rAU = 1.0/HUEqn.A(); // --- PISO loop while (piso.correct()) { - U = HUEqn.H()/aU; - phi = (fvc::interpolate(U) & mesh.Sf()); + // Calculate U from convection-diffusion matrix + U = rAU*HUEqn.H(); + + // Consistently calculate flux + piso.calcTransientConsistentFlux(phi, U, rAU, ddtUEqn); adjustPhi(phi, U, p); @@ -100,7 +103,14 @@ int main(int argc, char *argv[]) { fvScalarMatrix pEqn ( - fvm::laplacian(1/aU, p) == fvc::div(phi) + fvm::laplacian + ( + fvc::interpolate(rAU)/piso.aCoeff(), + p, + "laplacian(rAU," + p.name() + ')' + ) + == + fvc::div(phi) ); pEqn.setReference(pRefCell, pRefValue); @@ -117,13 +127,8 @@ int main(int argc, char *argv[]) # include "continuityErrs.H" - // Note: cannot call H(U) here because the velocity is not complete - // HJ, 22/Jan/2016 - U = 1.0/(aU + ddtUEqn.A())* - ( - U*aU - fvc::grad(p) + ddtUEqn.H() - ); - U.correctBoundaryConditions(); + // Consistently reconstruct velocity after pressure equation + piso.reconstructTransientVelocity(U, ddtUEqn, rAU, p, phi); } // Correct driving force for a constant mass flow rate @@ -135,9 +140,9 @@ int main(int argc, char *argv[]) // Calculate the pressure gradient increment needed to // adjust the average flow-rate to the correct value dimensionedScalar gragPplus = - (magUbar - magUbarStar)*aU.weightedAverage(mesh.V()); + (magUbar - magUbarStar)/rAU.weightedAverage(mesh.V()); - U += gragPplus/aU*flowDirection; + U += gragPplus*rAU*flowDirection; gradP += gragPplus;