Fixing indentation in applications/solvers/solidMechanics

This commit is contained in:
Henrik Rusche 2015-05-17 16:25:35 +02:00
parent b46695ce1e
commit c1cd77a15f
138 changed files with 5164 additions and 5127 deletions

View file

@ -6,26 +6,24 @@ aitkenDelta = (U - U.prevIter()) / aitkenInitialRes;
// update relaxation factor
if(iCorr == 0)
{
{
aitkenTheta = 0.1;
}
else
{
vectorField b = aitkenDelta.internalField() - aitkenDelta.prevIter().internalField();
//scalar sumMagB = gSum(mag(b));
scalar sumMagB = gSum(magSqr(b));
if(sumMagB < SMALL)
{
//Warning << "Aitken under-relaxation: denominator less then SMALL"
// << endl;
sumMagB += SMALL;
}
}
else
{
vectorField b = aitkenDelta.internalField() - aitkenDelta.prevIter().internalField();
//scalar sumMagB = gSum(mag(b));
scalar sumMagB = gSum(magSqr(b));
if(sumMagB < SMALL)
{
//Warning << "Aitken under-relaxation: denominator less then SMALL"
// << endl;
sumMagB += SMALL;
}
aitkenTheta = -aitkenTheta*
gSum(aitkenDelta.prevIter().internalField() & b)
/
sumMagB;
}
aitkenTheta = -aitkenTheta*
gSum(aitkenDelta.prevIter().internalField() & b)/sumMagB;
}
// correction to the latest U
U += aitkenTheta*aitkenDelta*aitkenInitialRes;

View file

@ -1,49 +1,44 @@
if(divSigmaExpMethod == "standard")
{
{
divSigmaExp = fvc::div
(
(
mu*gradU.T() + lambda*(I*tr(gradU)) - (mu + lambda)*gradU,
"div(sigma)"
);
}
else if(divSigmaExpMethod == "surface")
{
divSigmaExp = fvc::div
(
muf*(mesh.Sf() & fvc::interpolate(gradU.T()))
+ lambdaf*(mesh.Sf() & I*fvc::interpolate(tr(gradU)))
- (muf + lambdaf)*(mesh.Sf() & fvc::interpolate(gradU))
);
}
else if(divSigmaExpMethod == "decompose")
{
snGradU = fvc::snGrad(U);
}
else if(divSigmaExpMethod == "surface")
{
divSigmaExp = fvc::div
(
muf*(mesh.Sf() & fvc::interpolate(gradU.T()))
+ lambdaf*(mesh.Sf() & I*fvc::interpolate(tr(gradU)))
- (muf + lambdaf)*(mesh.Sf() & fvc::interpolate(gradU))
);
}
else if(divSigmaExpMethod == "decompose")
{
snGradU = fvc::snGrad(U);
surfaceTensorField shearGradU =
((I - n*n)&fvc::interpolate(gradU));
surfaceTensorField shearGradU = ((I - n*n) & fvc::interpolate(gradU));
divSigmaExp = fvc::div
(
mesh.magSf()
*(
- (muf + lambdaf)*(snGradU&(I - n*n))
+ lambdaf*tr(shearGradU&(I - n*n))*n
+ muf*(shearGradU&n)
)
divSigmaExp = fvc::div
(
mesh.magSf()*
(
- (muf + lambdaf)*(snGradU & (I - n*n))
+ lambdaf*tr(shearGradU & (I - n*n))*n
+ muf*(shearGradU&n)
)
);
}
else if(divSigmaExpMethod == "expLaplacian")
{
divSigmaExp =
- fvc::laplacian(mu + lambda, U, "laplacian(DU,U)")
+ fvc::div
(
mu*gradU.T()
+ lambda*(I*tr(gradU)),
"div(sigma)"
);
}
else
{
FatalError << "divSigmaExp method " << divSigmaExpMethod << " not found!" << endl;
}
}
else if(divSigmaExpMethod == "expLaplacian")
{
divSigmaExp =
- fvc::laplacian(mu + lambda, U, "laplacian(DU,U)")
+ fvc::div(mu*gradU.T() + lambda*(I*tr(gradU)), "div(sigma)");
}
else
{
FatalErrorIn(args.executable())
<< "divSigmaExp method " << divSigmaExpMethod << " not found!" << endl;
}

View file

@ -1,19 +1,19 @@
{
// force residual is the net force on the model
// this should got to zero in a converged steady state model
// should be altered for parallel runs
vector netForce = vector::zero;
forAll(mesh.boundary(), patchi)
// force residual is the net force on the model
// this should got to zero in a converged steady state model
// should be altered for parallel runs
vector netForce = vector::zero;
forAll(mesh.boundary(), patchi)
{
netForce +=
sum(
mesh.Sf().boundaryField()[patchi]
&
netForce += sum
(
2*mu.boundaryField()[patchi]*symm(gradU.boundaryField()[patchi])
+ lambda*tr(gradU.boundaryField()[patchi])*I
)
mesh.Sf().boundaryField()[patchi]
&
(
2*mu.boundaryField()[patchi]*symm(gradU.boundaryField()[patchi])
+ lambda*tr(gradU.boundaryField()[patchi])*I
)
);
}
forceResidual = mag(netForce);
forceResidual = mag(netForce);
}

View file

@ -1,22 +1,22 @@
{
surfaceVectorField n = mesh.Sf()/mesh.magSf();
// traction = (n&fvc::interpolate(sigma));
// traction = (n & fvc::interpolate(sigma));
// surfaceTensorField sGradU =
// ((I - n*n)&fvc::interpolate(gradU));
// ((I - n*n) & fvc::interpolate(gradU));
// traction =
// (2*mu + lambda)*snGradU
// - (mu + lambda)*(snGradU&(I - n*n))
// + mu*(sGradU&n)
// + mu*(sGradU & n)
// + lambda*tr(sGradU&(I - n*n))*n;
// traction =
// (2*mu + lambda)*fvc::snGrad(U)
// - (mu + lambda)*(n&sGradU)
// + mu*(sGradU&n)
// + lambda*tr(sGradU)*n;
// traction =
// (2*mu + lambda)*fvc::snGrad(U)
// - (mu + lambda)*(n & sGradU)
// + mu*(sGradU & n)
// + lambda*tr(sGradU)*n;
// philipc
// I am having trouble with back-calculation of interface tractions from solid interface
@ -27,15 +27,15 @@
traction = (n&fvc::interpolate(sigma));
// forAll(traction.boundaryField(), patchi)
// {
// {
// if (mesh.boundary()[patchi].type() == "cohesive")
// {
// {
// forAll(traction.boundaryField()[patchi], facei)
// {
// Pout << "face " << facei << " with traction magnitude "
// << mag(traction.boundaryField()[patchi][facei])/1e6 << " MPa and traction "
// << traction.boundaryField()[patchi][facei]/1e6 << " MPa" << endl;
// }
// }
// }
// {
// Pout << "face " << facei << " with traction magnitude "
// << mag(traction.boundaryField()[patchi][facei])/1e6 << " MPa and traction "
// << traction.boundaryField()[patchi][facei]/1e6 << " MPa" << endl;
// }
// }
// }
}

View file

@ -1,54 +1,53 @@
label cohesivePatchID = -1;
solidCohesiveFvPatchVectorField* cohesivePatchUPtr = NULL;
solidCohesiveFixedModeMixFvPatchVectorField* cohesivePatchUFixedModePtr = NULL;
solidCohesiveFvPatchVectorField* cohesivePatchUPtr = NULL;
solidCohesiveFixedModeMixFvPatchVectorField* cohesivePatchUFixedModePtr = NULL;
forAll (U.boundaryField(), patchI)
{
if (isA<solidCohesiveFvPatchVectorField>(U.boundaryField()[patchI]))
if (isA<solidCohesiveFvPatchVectorField>(U.boundaryField()[patchI]))
{
cohesivePatchID = patchI;
cohesivePatchUPtr =
&refCast<solidCohesiveFvPatchVectorField>
(
U.boundaryField()[cohesivePatchID]
);
break;
cohesivePatchID = patchI;
cohesivePatchUPtr =
&refCast<solidCohesiveFvPatchVectorField>
(
U.boundaryField()[cohesivePatchID]
);
break;
}
else if (isA<solidCohesiveFixedModeMixFvPatchVectorField>(U.boundaryField()[patchI]))
{
cohesivePatchID = patchI;
cohesivePatchUFixedModePtr =
&refCast<solidCohesiveFixedModeMixFvPatchVectorField>
(
U.boundaryField()[cohesivePatchID]
);
break;
}
else if (isA<solidCohesiveFixedModeMixFvPatchVectorField>(U.boundaryField()[patchI]))
{
cohesivePatchID = patchI;
cohesivePatchUFixedModePtr =
&refCast<solidCohesiveFixedModeMixFvPatchVectorField>
(
U.boundaryField()[cohesivePatchID]
);
break;
}
}
if(cohesivePatchID == -1)
{
FatalErrorIn(args.executable())
<< "Can't find cohesiveLawFvPatch" << nl
<< "One of the boundary patches in " << U.name() << ".boundaryField() "
<< "should be of type " << solidCohesiveFvPatchVectorField::typeName
<< "or " << solidCohesiveFixedModeMixFvPatchVectorField::typeName
<< abort(FatalError);
<< "One of the boundary patches in " << U.name() << ".boundaryField() "
<< "should be of type " << solidCohesiveFvPatchVectorField::typeName
<< "or " << solidCohesiveFixedModeMixFvPatchVectorField::typeName
<< abort(FatalError);
}
// solidCohesiveFvPatchVectorField& cohesivePatchU =
// refCast<solidCohesiveFvPatchVectorField>
// (
// U.boundaryField()[cohesivePatchID]
// U.boundaryField()[cohesivePatchID]
// );
// philipc: I have moved cohesive stuff to constitutiveModel
// cohesiveZone is an index field
// which allows the user to limit the crack to certain areas at runtime
// 1 for faces within cohesiveZone
// 0 for faces outside cohesiveZone
// philipc: I have moved cohesive stuff to constitutiveModel
// cohesiveZone is an index field
// which allows the user to limit the crack to certain areas at runtime
// 1 for faces within cohesiveZone
// 0 for faces outside cohesiveZone
surfaceScalarField cohesiveZone
(
IOobject
@ -65,85 +64,87 @@
// limit crack to specified boxes
{
const dictionary& stressControl =
mesh.solutionDict().subDict("solidMechanics");
const dictionary& stressControl =
mesh.solutionDict().subDict("solidMechanics");
List<boundBox> userBoxes(stressControl.lookup("crackLimitingBoxes"));
const surfaceVectorField& Cf = mesh.Cf();
forAll(cohesiveZone.internalField(), faceI)
{
bool faceInsideBox = false;
forAll(userBoxes, boxi)
List<boundBox> userBoxes(stressControl.lookup("crackLimitingBoxes"));
const surfaceVectorField& Cf = mesh.Cf();
forAll(cohesiveZone.internalField(), faceI)
{
if(userBoxes[boxi].contains(Cf.internalField()[faceI])) faceInsideBox = true;
}
bool faceInsideBox = false;
if(faceInsideBox)
{
cohesiveZone.internalField()[faceI] = 1.0;
}
}
forAll(cohesiveZone.boundaryField(), patchI)
{
// cracks may go along proc boundaries
if(mesh.boundaryMesh()[patchI].type() == processorPolyPatch::typeName)
{
forAll(cohesiveZone.boundaryField()[patchI], faceI)
{
bool faceInsideBox = false;
forAll(userBoxes, boxi)
forAll(userBoxes, boxi)
{
if(userBoxes[boxi].contains(Cf.boundaryField()[patchI][faceI])) faceInsideBox = true;
if(userBoxes[boxi].contains(Cf.internalField()[faceI])) faceInsideBox = true;
}
if(faceInsideBox)
if(faceInsideBox)
{
cohesiveZone.boundaryField()[patchI][faceI] = 1.0;
cohesiveZone.internalField()[faceI] = 1.0;
}
}
}
}
Info << "\nThere are " << gSum(cohesiveZone.internalField()) << " potential internal crack faces" << nl << endl;
Info << "\nThere are " << gSum(cohesiveZone.boundaryField())/2 << " potential coupled boundary crack faces" << nl << endl;
forAll(cohesiveZone.boundaryField(), patchI)
{
// cracks may go along proc boundaries
if(mesh.boundaryMesh()[patchI].type() == processorPolyPatch::typeName)
{
forAll(cohesiveZone.boundaryField()[patchI], faceI)
{
bool faceInsideBox = false;
// write field for visualisation
volScalarField cohesiveZoneVol
(
IOobject
(
"cohesiveZoneVol",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0)
);
forAll(cohesiveZone.internalField(), facei)
{
if(cohesiveZone.internalField()[facei])
{
cohesiveZoneVol.internalField()[mesh.owner()[facei]] = 1.0;
cohesiveZoneVol.internalField()[mesh.neighbour()[facei]] = 1.0;
forAll(userBoxes, boxi)
{
if(userBoxes[boxi].contains(Cf.boundaryField()[patchI][faceI])) faceInsideBox = true;
}
if(faceInsideBox)
{
cohesiveZone.boundaryField()[patchI][faceI] = 1.0;
}
}
}
}
}
forAll(cohesiveZone.boundaryField(), patchi)
{
forAll(cohesiveZone.boundaryField()[patchi], facei)
Info << "\nThere are " << gSum(cohesiveZone.internalField()) << " potential internal crack faces" << nl << endl;
Info << "\nThere are " << gSum(cohesiveZone.boundaryField())/2 << " potential coupled boundary crack faces" << nl << endl;
// write field for visualisation
volScalarField cohesiveZoneVol
(
IOobject
(
"cohesiveZoneVol",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0)
);
forAll(cohesiveZone.internalField(), facei)
{
if(cohesiveZone.boundaryField()[patchi][facei] > 0.0)
if(cohesiveZone.internalField()[facei])
{
cohesiveZoneVol.internalField()[mesh.owner()[facei]] = 1.0;
cohesiveZoneVol.internalField()[mesh.neighbour()[facei]] = 1.0;
}
}
forAll(cohesiveZone.boundaryField(), patchi)
{
cohesiveZoneVol.boundaryField()[patchi][facei] = 1.0;
forAll(cohesiveZone.boundaryField()[patchi], facei)
{
if(cohesiveZone.boundaryField()[patchi][facei] > 0.0)
{
cohesiveZoneVol.boundaryField()[patchi][facei] = 1.0;
}
}
}
}
}
Info << "Writing cohesiveZone field" << endl;
cohesiveZoneVol.write();
Info << "Writing cohesiveZone field" << endl;
cohesiveZoneVol.write();
}

View file

@ -35,8 +35,8 @@
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimless, vector::zero)
mesh,
dimensionedVector("zero", dimless, vector::zero)
);
volVectorField V
@ -122,7 +122,7 @@
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimLength, vector::zero)
dimensionedVector("zero", dimLength, vector::zero)
);
// aitken relaxation factor
scalar aitkenInitialRes = 1.0;
@ -140,5 +140,5 @@ scalar aitkenTheta = 0.1;
// IOobject::AUTO_WRITE
// ),
// mesh,
// dimensionedVector("zero", dimless, vector::zero)
// dimensionedVector("zero", dimless, vector::zero)
// );

View file

@ -1,14 +1,14 @@
OFstream * filePtr(NULL);
OFstream* filePtr(NULL);
word historyPatchName(mesh.solutionDict().subDict("solidMechanics").lookup("historyPatch"));
label historyPatchID = mesh.boundaryMesh().findPatchID(historyPatchName);
if(historyPatchID == -1)
{
{
Warning << "history patch " << historyPatchName
<< " not found. Force-displacement will not be written"
<< endl;
}
else if(Pstream::master())
{
}
else if(Pstream::master())
{
Info << "Force-displacement for patch " << historyPatchName
<< " will be written to forceDisp.dat"
<< endl;
@ -17,4 +17,4 @@ if(historyPatchID == -1)
filePtr = new OFstream(hisDirName/historyPatchName+"forceDisp.dat");
OFstream& forceDispFile = *filePtr;
forceDispFile << "#Disp(mm)\tForce(N)" << endl;
}
}

View file

@ -54,64 +54,64 @@ Author
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createCrackerMesh.H"
# include "createFields.H"
# include "createCrack.H"
//# include "createReference.H"
# include "createHistory.H"
# include "readDivSigmaExpMethod.H"
# include "createSolidInterfaceNoModify.H"
# include "setRootCase.H"
# include "createTime.H"
# include "createCrackerMesh.H"
# include "createFields.H"
# include "createCrack.H"
//# include "createReference.H"
# include "createHistory.H"
# include "readDivSigmaExpMethod.H"
# include "createSolidInterfaceNoModify.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
Info<< "\nStarting time loop\n" << endl;
lduMatrix::debug = 0;
lduMatrix::debug = 0;
scalar maxEffTractionFraction = 0;
scalar maxEffTractionFraction = 0;
// time rates for predictor
volTensorField gradV = fvc::ddt(gradU);
surfaceVectorField snGradV =
(snGradU - snGradU.oldTime())/runTime.deltaT();
// time rates for predictor
volTensorField gradV = fvc::ddt(gradU);
surfaceVectorField snGradV =
(snGradU - snGradU.oldTime())/runTime.deltaT();
//# include "initialiseSolution.H"
//# include "initialiseSolution.H"
while (runTime.run())
{
# include "readSolidMechanicsControls.H"
# include "setDeltaT.H"
while (runTime.run())
{
# include "readSolidMechanicsControls.H"
# include "setDeltaT.H"
runTime++;
runTime++;
Info<< "\nTime: " << runTime.timeName() << " s\n" << endl;
Info << "Time = " << runTime.timeName() << nl << endl;
volScalarField rho = rheology.rho();
volScalarField mu = rheology.mu();
volScalarField lambda = rheology.lambda();
surfaceScalarField muf = fvc::interpolate(mu);
surfaceScalarField lambdaf = fvc::interpolate(lambda);
volScalarField rho = rheology.rho();
volScalarField mu = rheology.mu();
volScalarField lambda = rheology.lambda();
surfaceScalarField muf = fvc::interpolate(mu);
surfaceScalarField lambdaf = fvc::interpolate(lambda);
if (solidInterfaceCorr)
{
solidInterfacePtr->modifyProperties(muf, lambdaf);
}
if (solidInterfaceCorr)
{
solidInterfacePtr->modifyProperties(muf, lambdaf);
}
//# include "waveCourantNo.H"
//# include "waveCourantNo.H"
int iCorr = 0;
lduMatrix::solverPerformance solverPerf;
scalar initialResidual = 0;
scalar relativeResidual = 1;
//scalar forceResidual = 1;
label nFacesToBreak = 0;
label nCoupledFacesToBreak = 0;
bool topoChange = false;
int iCorr = 0;
lduMatrix::solverPerformance solverPerf;
scalar initialResidual = 0;
scalar relativeResidual = 1;
//scalar forceResidual = 1;
label nFacesToBreak = 0;
label nCoupledFacesToBreak = 0;
bool topoChange = false;
// Predictor step using time rates
if (predictor)
// Predictor step using time rates
if (predictor)
{
Info<< "Predicting U, gradU and snGradU using velocity"
<< endl;
@ -120,149 +120,148 @@ int main(int argc, char *argv[])
snGradU += snGradV*runTime.deltaT();
}
do
{
surfaceVectorField n = mesh.Sf()/mesh.magSf();
do
{
U.storePrevIter();
do
{
surfaceVectorField n = mesh.Sf()/mesh.magSf();
do
{
U.storePrevIter();
# include "calculateDivSigmaExp.H"
# include "calculateDivSigmaExp.H"
fvVectorMatrix UEqn
(
rho*fvm::d2dt2(U)
==
fvm::laplacian(2*muf + lambdaf, U, "laplacian(DU,U)")
+ divSigmaExp
);
fvVectorMatrix UEqn
(
rho*fvm::d2dt2(U)
==
fvm::laplacian(2*muf + lambdaf, U, "laplacian(DU,U)")
+ divSigmaExp
);
//# include "setReference.H"
//# include "setReference.H"
if (solidInterfaceCorr)
{
solidInterfacePtr->correct(UEqn);
}
if(solidInterfaceCorr)
{
solidInterfacePtr->correct(UEqn);
}
if (relaxEqn)
{
UEqn.relax();
}
if (relaxEqn)
{
UEqn.relax();
}
solverPerf = UEqn.solve();
solverPerf = UEqn.solve();
if (aitkenRelax)
{
# include "aitkenRelaxation.H"
}
else
{
U.relax();
}
if (aitkenRelax)
{
# include "aitkenRelaxation.H"
}
else
{
U.relax();
}
if (iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
aitkenInitialRes = gMax(mag(U.internalField()));
}
if (iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
aitkenInitialRes = gMax(mag(U.internalField()));
}
//gradU = solidInterfacePtr->grad(U);
// use leastSquaresSolidInterface grad scheme
gradU = fvc::grad(U);
//gradU = solidInterfacePtr->grad(U);
// use leastSquaresSolidInterface grad scheme
gradU = fvc::grad(U);
# include "calculateRelativeResidual.H"
//# include "calculateForceResidual.H"
# include "calculateRelativeResidual.H"
//# include "calculateForceResidual.H"
if (iCorr % infoFrequency == 0)
{
Info << "\tTime " << runTime.value()
<< ", Corr " << iCorr
<< ", Solving for " << U.name()
<< " using " << solverPerf.solverName()
<< ", res = " << solverPerf.initialResidual()
<< ", rel res = " << relativeResidual;
if (aitkenRelax)
{
Info << ", aitken = " << aitkenTheta;
}
Info << ", inner iters " << solverPerf.nIterations() << endl;
}
}
while
(
//iCorr++ == 0
iCorr++ < 2
||
(
solverPerf.initialResidual() > convergenceTolerance
//relativeResidual > convergenceTolerance
&&
iCorr < nCorr
)
);
if (iCorr % infoFrequency == 0)
{
Info<< "\tTime " << runTime.value()
<< ", Corr " << iCorr
<< ", Solving for " << U.name()
<< " using " << solverPerf.solverName()
<< ", res = " << solverPerf.initialResidual()
<< ", rel res = " << relativeResidual;
if (aitkenRelax)
{
Info << ", aitken = " << aitkenTheta;
}
Info << ", inner iters " << solverPerf.nIterations() << endl;
}
}
while
(
//iCorr++ == 0
iCorr++ < 2
||
(
solverPerf.initialResidual() > convergenceTolerance
//relativeResidual > convergenceTolerance
&& iCorr < nCorr
)
);
Info << "Solving for " << U.name() << " using "
<< solverPerf.solverName()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", No outer iterations " << iCorr
<< ", Relative residual " << relativeResidual << endl;
Info<< "Solving for " << U.name() << " using "
<< solverPerf.solverName()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", No outer iterations " << iCorr
<< ", Relative residual " << relativeResidual << endl;
# include "calculateTraction.H"
# include "updateCrack.H"
# include "calculateTraction.H"
# include "updateCrack.H"
Info<< "Max effective traction fraction: "
<< maxEffTractionFraction << endl;
Info<< "Max effective traction fraction: "
<< maxEffTractionFraction << endl;
// reset counter if faces want to crack
if ((nFacesToBreak > 0) || (nCoupledFacesToBreak > 0)) iCorr = 0;
}
while( (nFacesToBreak > 0) || (nCoupledFacesToBreak > 0));
// reset counter if faces want to crack
if ((nFacesToBreak > 0) || (nCoupledFacesToBreak > 0)) iCorr = 0;
}
while( (nFacesToBreak > 0) || (nCoupledFacesToBreak > 0));
if (cohesivePatchUPtr)
{
if (returnReduce(cohesivePatchUPtr->size(), sumOp<label>()))
{
cohesivePatchUPtr->cracking();
}
}
else
{
if
(
returnReduce
(
cohesivePatchUFixedModePtr->size(),
sumOp<label>()
)
)
{
Pout << "Number of faces in crack: "
<< cohesivePatchUFixedModePtr->size() << endl;
cohesivePatchUFixedModePtr->relativeSeparationDistance();
}
}
if (cohesivePatchUPtr)
{
if (returnReduce(cohesivePatchUPtr->size(), sumOp<label>()))
{
cohesivePatchUPtr->cracking();
}
}
else
{
if
(
returnReduce
(
cohesivePatchUFixedModePtr->size(),
sumOp<label>()
)
)
{
Pout << "Number of faces in crack: "
<< cohesivePatchUFixedModePtr->size() << endl;
cohesivePatchUFixedModePtr->relativeSeparationDistance();
}
}
// update time rates for predictor
if (predictor)
{
V = fvc::ddt(U);
gradV = fvc::ddt(gradU);
snGradV = (snGradU - snGradU.oldTime())/runTime.deltaT();
}
// update time rates for predictor
if (predictor)
{
V = fvc::ddt(U);
gradV = fvc::ddt(gradU);
snGradV = (snGradU - snGradU.oldTime())/runTime.deltaT();
}
# include "calculateEpsilonSigma.H"
# include "writeFields.H"
# include "writeHistory.H"
# include "calculateEpsilonSigma.H"
# include "writeFields.H"
# include "writeHistory.H"
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s\n\n"
<< endl;
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s\n\n"
<< endl;
}
Info<< "End\n" << endl;
Info<< "End\n" << endl;
return(0);
return(0);
}

View file

@ -2,8 +2,8 @@
word divSigmaExpMethod(mesh.solutionDict().subDict("solidMechanics").lookup("divSigmaExp"));
Info << "Selecting divSigmaExp calculation method " << divSigmaExpMethod << endl;
if(divSigmaExpMethod != "standard" && divSigmaExpMethod != "surface" && divSigmaExpMethod != "decompose" && divSigmaExpMethod != "laplacian")
{
{
FatalError << "divSigmaExp method " << divSigmaExpMethod << " not found!" << nl
<< "valid methods are:\nstandard\nsurface\ndecompose\nlaplacian"
<< exit(FatalError);
}
<< "valid methods are:\nstandard\nsurface\ndecompose\nlaplacian"
<< exit(FatalError);
}

View file

@ -1,36 +1,36 @@
if (dynamicTimeStep && runTime.value() > dynamicTimeStepActivation)
{
{
if
(
//(maxEffTraction < 0.999*CzLaw.sigmaMax().value())
(returnReduce(maxEffTractionFraction, maxOp<scalar>()) < 0.99)
//&& (cohesivePatchU.size() == 0)
&& (mag(runTime.deltaT().value() - deltaTmax) < SMALL)
)
{
(
//(maxEffTraction < 0.999*CzLaw.sigmaMax().value())
(returnReduce(maxEffTractionFraction, maxOp<scalar>()) < 0.99)
//&& (cohesivePatchU.size() == 0)
&& (mag(runTime.deltaT().value() - deltaTmax) < SMALL)
)
{
runTime.setDeltaT(deltaTmax);
}
}
else
{
{
scalar newDeltaT = deltaTmin;
if (newDeltaT/runTime.deltaT().value() < 0.5)
{
{
newDeltaT = 0.5*runTime.deltaT().value();
Info << "Reducing time step" << nl;
}
}
runTime.setDeltaT(newDeltaT);
}
}
Pout << "Current time step size: "
<< runTime.deltaT().value() << " s" << endl;
<< runTime.deltaT().value() << " s" << endl;
scalar maxDT = runTime.deltaT().value();
if(mag(returnReduce(maxDT, maxOp<scalar>()) - runTime.deltaT().value()) > SMALL)
{
{
FatalError << "Processors have different time-steps!"
<< exit(FatalError);
}
}
<< exit(FatalError);
}
}

View file

@ -13,7 +13,7 @@ nCoupledFacesToBreak = 0;
// only consider tensile tractions
normalTraction = max(normalTraction, scalar(0));
scalarField shearTraction =
cohesiveZone.internalField() *
cohesiveZone.internalField()*
mag( (I - Foam::sqr(n.internalField())) & traction.internalField() );
// the traction fraction is monitored to decide which faces to break:
@ -41,6 +41,7 @@ nCoupledFacesToBreak = 0;
(normalTraction/sigmaMaxI)*(normalTraction/sigmaMaxI)
+ (shearTraction/sigmaMaxI)*(shearTraction/sigmaMaxI);
}
maxEffTractionFraction = gMax(effTractionFraction);
SLList<label> facesToBreakList;
@ -77,9 +78,14 @@ nCoupledFacesToBreak = 0;
scalar faceToBreakEffTractionFraction = 0;
forAll(facesToBreakEffTractionFraction, faceI)
{
if (facesToBreakEffTractionFraction[faceI] > faceToBreakEffTractionFraction)
if
(
facesToBreakEffTractionFraction[faceI]
> faceToBreakEffTractionFraction
)
{
faceToBreakEffTractionFraction = facesToBreakEffTractionFraction[faceI];
faceToBreakEffTractionFraction =
facesToBreakEffTractionFraction[faceI];
faceToBreakIndex = facesToBreak[faceI];
}
}
@ -92,7 +98,11 @@ nCoupledFacesToBreak = 0;
bool procHasFaceToBreak = false;
if (nFacesToBreak > 0)
{
if ( mag(gMaxEffTractionFraction - faceToBreakEffTractionFraction) < SMALL )
if
(
mag(gMaxEffTractionFraction - faceToBreakEffTractionFraction)
< SMALL
)
{
// philipc - Maximum traction fraction is on this processor
procHasFaceToBreak = true;
@ -100,7 +110,7 @@ nCoupledFacesToBreak = 0;
}
// Check if maximum is present on more then one processors
label procID = Pstream::nProcs();
label procID = Pstream::nProcs();
if (procHasFaceToBreak)
{
procID = Pstream::myProcNo();
@ -125,46 +135,51 @@ nCoupledFacesToBreak = 0;
if (mesh.boundary()[patchI].coupled())
{
// scalarField pEffTraction =
// cohesiveZone.boundaryField()[patchI] *
// mag(traction.boundaryField()[patchI]);
// scalarField pEffTractionFraction = pEffTraction/sigmaMax.boundaryField()[patchI];
// cohesiveZone.boundaryField()[patchI]*
// mag(traction.boundaryField()[patchI]);
// scalarField pEffTractionFraction = pEffTraction/sigmaMax.boundaryField()[patchI];
scalarField pNormalTraction =
cohesiveZone.boundaryField()[patchI] *
( n.boundaryField()[patchI] & traction.boundaryField()[patchI] );
pNormalTraction = max(pNormalTraction, scalar(0)); // only consider tensile tractions
scalarField pShearTraction =
cohesiveZone.boundaryField()[patchI] *
mag( (I - Foam::sqr(n.boundaryField()[patchI])) & traction.boundaryField()[patchI] );
scalarField pNormalTraction =
cohesiveZone.boundaryField()[patchI]*
( n.boundaryField()[patchI] & traction.boundaryField()[patchI] );
// the traction fraction is monitored to decide which faces to break:
// ie (tN/tNC)^2 + (tS/tSC)^2 >1 to crack a face
const scalarField& pSigmaMax = sigmaMax.boundaryField()[patchI];
const scalarField& pTauMax = tauMax.boundaryField()[patchI];
// only consider tensile tractions
pNormalTraction = max(pNormalTraction, scalar(0));
scalarField pEffTractionFraction(pNormalTraction.size(), 0.0);
if(cohesivePatchUPtr)
{
pEffTractionFraction =
(pNormalTraction/pSigmaMax)*(pNormalTraction/pSigmaMax) + (pShearTraction/pTauMax)*(pShearTraction/pTauMax);
}
else
{
// solidCohesiveFixedModeMix only uses sigmaMax
pEffTractionFraction =
(pNormalTraction/pSigmaMax)*(pNormalTraction/pSigmaMax) + (pShearTraction/pSigmaMax)*(pShearTraction/pSigmaMax);
}
scalarField pShearTraction =
cohesiveZone.boundaryField()[patchI]*
mag( (I - Foam::sqr(n.boundaryField()[patchI])) & traction.boundaryField()[patchI] );
// the traction fraction is monitored to decide which faces to break:
// ie (tN/tNC)^2 + (tS/tSC)^2 >1 to crack a face
const scalarField& pSigmaMax = sigmaMax.boundaryField()[patchI];
const scalarField& pTauMax = tauMax.boundaryField()[patchI];
scalarField pEffTractionFraction(pNormalTraction.size(), 0.0);
if(cohesivePatchUPtr)
{
pEffTractionFraction =
(pNormalTraction/pSigmaMax)*(pNormalTraction/pSigmaMax)
+ (pShearTraction/pTauMax)*(pShearTraction/pTauMax);
}
else
{
// solidCohesiveFixedModeMix only uses sigmaMax
pEffTractionFraction =
(pNormalTraction/pSigmaMax)*(pNormalTraction/pSigmaMax)
+ (pShearTraction/pSigmaMax)*(pShearTraction/pSigmaMax);
}
label start = mesh.boundaryMesh()[patchI].start();
forAll(pEffTractionFraction, faceI)
{
if (pEffTractionFraction[faceI] > maxEffTractionFraction)
{
maxEffTractionFraction = pEffTractionFraction[faceI];
if (pEffTractionFraction[faceI] > maxEffTractionFraction)
{
maxEffTractionFraction = pEffTractionFraction[faceI];
}
if (pEffTractionFraction[faceI] > 1.0)
if (pEffTractionFraction[faceI] > 1.0)
{
coupledFacesToBreakList.insert(start + faceI);
coupledFacesToBreakEffTractionFractionList.insert
@ -259,8 +274,8 @@ nCoupledFacesToBreak = 0;
labelList index(Pstream::nProcs(), -1);
if (nCoupledFacesToBreak)
{
label patchID =
mesh.boundaryMesh().whichPatch(coupledFaceToBreakIndex);
label patchID =
mesh.boundaryMesh().whichPatch(coupledFaceToBreakIndex);
label start = mesh.boundaryMesh()[patchID].start();
label localIndex = coupledFaceToBreakIndex - start;
@ -318,6 +333,7 @@ nCoupledFacesToBreak = 0;
vector faceToBreakNormal = vector::zero;
scalar faceToBreakSigmaMax = 0.0;
scalar faceToBreakTauMax = 0.0;
// Set faces to break
if (nFacesToBreak > 0)
{
@ -325,31 +341,39 @@ nCoupledFacesToBreak = 0;
faceToBreakNormal = n.internalField()[faceToBreakIndex];
// Scale broken face traction
faceToBreakSigmaMax = sigmaMaxI[faceToBreakIndex];
faceToBreakTauMax = tauMaxI[faceToBreakIndex];
scalar normalTrac = faceToBreakNormal & faceToBreakTraction;
normalTrac = max(normalTrac, 0.0);
scalar shearTrac = mag( (I - sqr(faceToBreakNormal)) & faceToBreakTraction );
scalar scaleFactor = 1;
if(cohesivePatchUPtr)
{
scaleFactor =
::sqrt(1 / (
(normalTrac/faceToBreakSigmaMax)*(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakTauMax)*(shearTrac/faceToBreakTauMax)
) );
}
else
faceToBreakSigmaMax = sigmaMaxI[faceToBreakIndex];
faceToBreakTauMax = tauMaxI[faceToBreakIndex];
scalar normalTrac = faceToBreakNormal & faceToBreakTraction;
normalTrac = max(normalTrac, 0.0);
scalar shearTrac = mag( (I - sqr(faceToBreakNormal)) & faceToBreakTraction );
scalar scaleFactor = 1;
if(cohesivePatchUPtr)
{
// solidCohesiveFixedModeMix only uses sigmaMax
scaleFactor =
::sqrt(1 / (
(normalTrac/faceToBreakSigmaMax)*(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakSigmaMax)*(shearTrac/faceToBreakSigmaMax)
) );
scaleFactor =
Foam::sqrt
(
1 /
(
(normalTrac/faceToBreakSigmaMax)*(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakTauMax)*(shearTrac/faceToBreakTauMax)
)
);
}
else
{
// solidCohesiveFixedModeMix only uses sigmaMax
scaleFactor =
Foam::sqrt
(
1 /
(
(normalTrac/faceToBreakSigmaMax)*(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakSigmaMax)*(shearTrac/faceToBreakSigmaMax)
)
);
}
faceToBreakTraction *= scaleFactor;
faceToBreakTraction *= scaleFactor;
topoChange = true;
}
@ -364,29 +388,37 @@ nCoupledFacesToBreak = 0;
faceToBreakNormal = n.boundaryField()[patchID][localIndex];
// Scale broken face traction
faceToBreakSigmaMax = sigmaMax.boundaryField()[patchID][localIndex];
faceToBreakTauMax = tauMax.boundaryField()[patchID][localIndex];
scalar normalTrac = faceToBreakNormal & faceToBreakTraction;
normalTrac = max(normalTrac, 0.0);
scalar shearTrac = mag( (I - sqr(faceToBreakNormal)) & faceToBreakTraction );
scalar scaleFactor = 1;
if(cohesivePatchUPtr)
{
scaleFactor =
::sqrt(1 / (
(normalTrac/faceToBreakSigmaMax)*(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakTauMax)*(shearTrac/faceToBreakTauMax)
) );
}
else
{
// solidCohesiveFixedModeMix only uses sigmaMax
scaleFactor =
::sqrt(1 / (
(normalTrac/faceToBreakSigmaMax)*(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakSigmaMax)*(shearTrac/faceToBreakSigmaMax)
) );
}
faceToBreakSigmaMax = sigmaMax.boundaryField()[patchID][localIndex];
faceToBreakTauMax = tauMax.boundaryField()[patchID][localIndex];
scalar normalTrac = faceToBreakNormal & faceToBreakTraction;
normalTrac = max(normalTrac, 0.0);
scalar shearTrac = mag( (I - sqr(faceToBreakNormal)) & faceToBreakTraction );
scalar scaleFactor = 1;
if(cohesivePatchUPtr)
{
scaleFactor =
Foam::sqrt
(
1 /
(
(normalTrac/faceToBreakSigmaMax)*(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakTauMax)*(shearTrac/faceToBreakTauMax)
)
);
}
else
{
// solidCohesiveFixedModeMix only uses sigmaMax
scaleFactor =
Foam::sqrt
(
1 /
(
(normalTrac/faceToBreakSigmaMax)*(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakSigmaMax)*(shearTrac/faceToBreakSigmaMax)
)
);
}
faceToBreakTraction *= scaleFactor;
@ -422,20 +454,20 @@ nCoupledFacesToBreak = 0;
muf = fvc::interpolate(mu);
lambdaf = fvc::interpolate(lambda);
// we need to modify propertiess after cracking otherwise momentum equation is wrong
// but solidInterface seems to hold some information about old mesh
// so we will delete it and make another
// we could probably add a public clearout function
// create new solidInterface
//Pout << "Creating new solidInterface" << endl;
//delete solidInterfacePtr;
//solidInterfacePtr = new solidInterface(mesh, rheology);
// delete demand driven data as the mesh has changed
if(rheology.solidInterfaceActive())
{
rheology.solInterface().clearOut();
solidInterfacePtr->modifyProperties(muf, lambdaf);
}
// we need to modify propertiess after cracking otherwise momentum equation is wrong
// but solidInterface seems to hold some information about old mesh
// so we will delete it and make another
// we could probably add a public clearout function
// create new solidInterface
//Pout << "Creating new solidInterface" << endl;
//delete solidInterfacePtr;
//solidInterfacePtr = new solidInterface(mesh, rheology);
// delete demand driven data as the mesh has changed
if(rheology.solidInterfaceActive())
{
rheology.solInterface().clearOut();
solidInterfacePtr->modifyProperties(muf, lambdaf);
}
// Local crack displacement
vectorField UpI =
@ -447,21 +479,21 @@ nCoupledFacesToBreak = 0;
vectorField globalUpI = mesh.globalCrackField(UpI);
vectorField globalOldUpI = mesh.globalCrackField(oldUpI);
// mu and lambda field on new crack faces must be updated
// mu and lambda field on new crack faces must be updated
scalarField muPI = mu.boundaryField()[cohesivePatchID].patchInternalField();
scalarField lambdaPI = lambda.boundaryField()[cohesivePatchID].patchInternalField();
scalarField globalMuPI = mesh.globalCrackField(muPI);
scalarField globalLambdaPI = mesh.globalCrackField(lambdaPI);
// cohesivePatchU.size()
int cohesivePatchSize(cohesivePatchUPtr ? cohesivePatchUPtr->size() : cohesivePatchUFixedModePtr->size());
// cohesivePatchU.size()
int cohesivePatchSize(cohesivePatchUPtr ? cohesivePatchUPtr->size() : cohesivePatchUFixedModePtr->size());
// Initialise U for new cohesive face
const labelList& gcfa = mesh.globalCrackFaceAddressing();
label globalIndex = mesh.localCrackStart();
// for (label i=0; i<cohesivePatchU.size(); i++)
for (label i=0; i<cohesivePatchSize; i++)
{
{
label oldFaceIndex = faceMap[start+i];
// If new face
@ -480,10 +512,10 @@ nCoupledFacesToBreak = 0;
+ globalOldUpI[gcfa[globalIndex]]
);
// initialise mu and lambda on new faces
// set new face value to value of internal cell
muf.boundaryField()[cohesivePatchID][i] = globalMuPI[globalIndex];
lambdaf.boundaryField()[cohesivePatchID][i] = globalLambdaPI[globalIndex];
// initialise mu and lambda on new faces
// set new face value to value of internal cell
muf.boundaryField()[cohesivePatchID][i] = globalMuPI[globalIndex];
lambdaf.boundaryField()[cohesivePatchID][i] = globalLambdaPI[globalIndex];
globalIndex++;
}
@ -494,24 +526,24 @@ nCoupledFacesToBreak = 0;
}
// we must calculate grad using interface
// U at the interface has not been calculated yet as interface.correct()
// has not been called yet
// not really a problem as gradU is correct in second outer iteration
// as long as this does not cause convergence problems for the first iterations.
// we should be able to calculate the interface displacements without
// having to call interface.correct()
// todo: add calculateInterfaceU() function
// interface grad uses Gauss, we need least squares
//gradU = solidInterfacePtr->grad(U);
// U at the interface has not been calculated yet as interface.correct()
// has not been called yet
// not really a problem as gradU is correct in second outer iteration
// as long as this does not cause convergence problems for the first iterations.
// we should be able to calculate the interface displacements without
// having to call interface.correct()
// todo: add calculateInterfaceU() function
// interface grad uses Gauss, we need least squares
//gradU = solidInterfacePtr->grad(U);
gradU = fvc::grad(U); // leastSquaresSolidInterface grad scheme
//snGradU = fvc::snGrad(U);
# include "calculateTraction.H"
//if (nFacesToBreak || nCoupledFacesToBreak) mesh.write(); traction.write();
//if (nFacesToBreak || nCoupledFacesToBreak) mesh.write(); traction.write();
// Initialise initiation traction for new cohesive patch face
// for (label i=0; i<cohesivePatchU.size(); i++)
for (label i=0; i<cohesivePatchSize; i++)
for (label i=0; i<cohesivePatchSize; i++)
{
label oldFaceIndex = faceMap[start+i];
@ -527,48 +559,49 @@ nCoupledFacesToBreak = 0;
/mesh.magSf().boundaryField()[cohesivePatchID][i];
//vector n1 = -n0;
if ((n0&faceToBreakNormal) > SMALL)
if ((n0 & faceToBreakNormal) > SMALL)
{
traction.boundaryField()[cohesivePatchID][i] =
faceToBreakTraction;
traction.boundaryField()[cohesivePatchID][i] =
faceToBreakTraction;
traction.oldTime().boundaryField()[cohesivePatchID][i] =
faceToBreakTraction;
traction.oldTime().boundaryField()[cohesivePatchID][i] =
faceToBreakTraction;
if(cohesivePatchUPtr)
{
cohesivePatchUPtr->traction()[i] = faceToBreakTraction;
}
else
{
cohesivePatchUFixedModePtr->traction()[i] = faceToBreakTraction;
cohesivePatchUFixedModePtr->initiationTraction()[i] = faceToBreakTraction;
}
if(cohesivePatchUPtr)
{
cohesivePatchUPtr->traction()[i] = faceToBreakTraction;
}
else
{
cohesivePatchUFixedModePtr->traction()[i] = faceToBreakTraction;
cohesivePatchUFixedModePtr->initiationTraction()[i] = faceToBreakTraction;
}
}
else
{
traction.boundaryField()[cohesivePatchID][i] =
-faceToBreakTraction;
traction.boundaryField()[cohesivePatchID][i] =
-faceToBreakTraction;
traction.oldTime().boundaryField()[cohesivePatchID][i] =
-faceToBreakTraction;
traction.oldTime().boundaryField()[cohesivePatchID][i] =
-faceToBreakTraction;
//cohesivePatchU.traction()[i] = -faceToBreakTraction;
if(cohesivePatchUPtr)
{
cohesivePatchUPtr->traction()[i] = -faceToBreakTraction;
}
else
{
cohesivePatchUFixedModePtr->traction()[i] = -faceToBreakTraction;
cohesivePatchUFixedModePtr->initiationTraction()[i] = -faceToBreakTraction;
}
//cohesivePatchU.traction()[i] = -faceToBreakTraction;
if(cohesivePatchUPtr)
{
cohesivePatchUPtr->traction()[i] = -faceToBreakTraction;
}
else
{
cohesivePatchUFixedModePtr->traction()[i] =
-faceToBreakTraction;
cohesivePatchUFixedModePtr->initiationTraction()[i] =
-faceToBreakTraction;
}
}
}
}
// hmmnn we only need a reference for very small groups of cells
// turn off for now
//# include "updateReference.H"
// hmmnn we only need a reference for very small groups of cells
// turn off for now
//# include "updateReference.H"
}
}

View file

@ -4,20 +4,21 @@
forAll(U.boundaryField(), patchI)
{
// philipc - this used to set a reference on
// processors which did not have a patch that fixesValue
// so processor in the centre of the domain all had
// a referece set causing stress peaks and resulting
// in an incorrect solution
// so a quick fix is to not set a reference on regions
// with a processor boundary
//if (U.boundaryField()[patchI].fixesValue())
if (
U.boundaryField()[patchI].fixesValue()
||
mesh.boundaryMesh()[patchI].type()
== processorPolyPatch::typeName
)
// philipc - this used to set a reference on
// processors which did not have a patch that fixesValue
// so processor in the centre of the domain all had
// a referece set causing stress peaks and resulting
// in an incorrect solution
// so a quick fix is to not set a reference on regions
// with a processor boundary
//if (U.boundaryField()[patchI].fixesValue())
if
(
U.boundaryField()[patchI].fixesValue()
||
mesh.boundaryMesh()[patchI].type()
== processorPolyPatch::typeName
)
{
const unallocLabelList& curFaceCells =
mesh.boundary()[patchI].faceCells();

View file

@ -85,62 +85,65 @@ if (runTime.outputTime() || topoChange)
//- cohesive damage and cracking, and GII and GII
volScalarField damageAndCracks
(
(
IOobject
(
"damageAndCracks",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
"damageAndCracks",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0),
calculatedFvPatchVectorField::typeName
);
volScalarField GI
(
IOobject
(
"GI",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0),
calculatedFvPatchVectorField::typeName
);
volScalarField GII
(
IOobject
(
"GII",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0),
calculatedFvPatchVectorField::typeName
);
forAll(U.boundaryField(), patchi)
{
// if(U.boundaryField()[patchi].type() == cohesiveLawMultiMatFvPatchVectorField::typeName)
if(U.boundaryField()[patchi].type() == solidCohesiveFvPatchVectorField::typeName)
{
// cohesiveLawMultiMatFvPatchVectorField& Upatch =
// refCast<cohesiveLawMultiMatFvPatchVectorField>(U.boundaryField()[patchi]);
solidCohesiveFvPatchVectorField& Upatch =
refCast<solidCohesiveFvPatchVectorField>(U.boundaryField()[patchi]);
);
GI.boundaryField()[patchi] = Upatch.GI();
GII.boundaryField()[patchi] = Upatch.GII();
damageAndCracks.boundaryField()[patchi] = Upatch.crackingAndDamage();
}
}
volScalarField GI
(
IOobject
(
"GI",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0),
calculatedFvPatchVectorField::typeName
);
volScalarField GII
(
IOobject
(
"GII",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0),
calculatedFvPatchVectorField::typeName
);
forAll(U.boundaryField(), patchi)
{
// if(U.boundaryField()[patchi].type() == cohesiveLawMultiMatFvPatchVectorField::typeName)
if(U.boundaryField()[patchi].type() == solidCohesiveFvPatchVectorField::typeName)
{
// cohesiveLawMultiMatFvPatchVectorField& Upatch =
// refCast<cohesiveLawMultiMatFvPatchVectorField>(U.boundaryField()[patchi]);
solidCohesiveFvPatchVectorField& Upatch =
refCast<solidCohesiveFvPatchVectorField>(U.boundaryField()[patchi]);
GI.boundaryField()[patchi] = Upatch.GI();
GII.boundaryField()[patchi] = Upatch.GII();
damageAndCracks.boundaryField()[patchi] = Upatch.crackingAndDamage();
}
}
volScalarField GTotal("GTotal", GI + GII);
GTotal.write();

View file

@ -1,35 +1,35 @@
//- write force displacement to file
if(historyPatchID != -1)
{
{
Info << "Writing disp and force of patch "<<historyPatchName<<" to file"
<< endl;
<< endl;
//- for small strain or moving mesh
//- for small strain or moving mesh
vector force = gSum(mesh.boundary()[historyPatchID].Sf() & sigma.boundaryField()[historyPatchID]);
//- for large strain total lagrangian
// tensorField F = I + gradU.boundaryField()[historyPatchID];
// vectorField totalForce = mesh.Sf().boundaryField()[historyPatchID] & (sigma.boundaryField()[historyPatchID] & F);
//- for large strain total lagrangian
// tensorField F = I + gradU.boundaryField()[historyPatchID];
// vectorField totalForce = mesh.Sf().boundaryField()[historyPatchID] & (sigma.boundaryField()[historyPatchID] & F);
//vector force = sum( totalForce );
//vector force = sum( totalForce );
//scalar force = force[vector::Y];
//scalar force = force[vector::Y];
//- patchIntegrate utility integrates it this way but this is worng because the sigma tensor should
//- be dotted with the surface normal to give the actual traction/force
//- you cannot just take the component of the sigma tensor
//scalar forcePatchIntegrateMethod = gSum(
// mesh.magSf().boundaryField()[historyPatchID]
// *sigma.boundaryField()[historyPatchID].component(symmTensor::XY)
// );
//- patchIntegrate utility integrates it this way but this is worng because the sigma tensor should
//- be dotted with the surface normal to give the actual traction/force
//- you cannot just take the component of the sigma tensor
//scalar forcePatchIntegrateMethod = gSum(
// mesh.magSf().boundaryField()[historyPatchID]*
// sigma.boundaryField()[historyPatchID].component(symmTensor::XY)
//);
vector avDisp = gAverage(U.boundaryField()[historyPatchID]);
vector avDisp = gAverage(U.boundaryField()[historyPatchID]);
//- write to file
if(Pstream::master())
{
OFstream& forceDispFile = *filePtr;
forceDispFile << avDisp.x() << " " << avDisp.y() << " " << avDisp.z() << " "
<< force.x() << " " << force.y() << " " << force.z() << endl;
}
}
//- write to file
if(Pstream::master())
{
OFstream& forceDispFile = *filePtr;
forceDispFile << avDisp.x() << " " << avDisp.y() << " " << avDisp.z() << " "
<< force.x() << " " << force.y() << " " << force.z() << endl;
}
}

View file

@ -6,26 +6,24 @@ aitkenDelta = (DU - DU.prevIter()) / aitkenInitialRes;
// update relaxation factor
if(iCorr == 0)
{
{
aitkenTheta = 0.01;
}
else
{
vectorField b = aitkenDelta.internalField() - aitkenDelta.prevIter().internalField();
//scalar sumMagB = gSum(mag(b));
scalar sumMagB = gSum(magSqr(b));
if(sumMagB < SMALL)
{
//Warning << "Aitken under-relaxation: denominator less then SMALL"
// << endl;
sumMagB += SMALL;
}
}
else
{
vectorField b = aitkenDelta.internalField() - aitkenDelta.prevIter().internalField();
//scalar sumMagB = gSum(mag(b));
scalar sumMagB = gSum(magSqr(b));
if(sumMagB < SMALL)
{
//Warning << "Aitken under-relaxation: denominator less then SMALL"
// << endl;
sumMagB += SMALL;
}
aitkenTheta = -aitkenTheta*
gSum(aitkenDelta.prevIter().internalField() & b)
/
sumMagB;
}
aitkenTheta = -aitkenTheta*
gSum(aitkenDelta.prevIter().internalField() & b)/sumMagB;
}
// correction to the latest DU
DU += aitkenTheta*aitkenDelta*aitkenInitialRes;

View file

@ -1,49 +1,45 @@
if(divDSigmaExpMethod == "standard")
{
{
divDSigmaExp = fvc::div
(
mu*gradDU.T() + lambda*(I*tr(gradDU)) - (mu + lambda)*gradDU,
"div(sigma)"
);
}
else if(divDSigmaExpMethod == "surface")
{
divDSigmaExp = fvc::div
(
muf*(mesh.Sf() & fvc::interpolate(gradDU.T()))
+ lambdaf*(mesh.Sf() & I*fvc::interpolate(tr(gradDU)))
- (muf + lambdaf)*(mesh.Sf() & fvc::interpolate(gradDU))
(
mu*gradDU.T() + lambda*(I*tr(gradDU)) - (mu + lambda)*gradDU,
"div(sigma)"
);
}
else if(divDSigmaExpMethod == "decompose")
{
snGradDU = fvc::snGrad(DU);
}
else if(divDSigmaExpMethod == "surface")
{
divDSigmaExp = fvc::div
(
muf*(mesh.Sf() & fvc::interpolate(gradDU.T()))
+ lambdaf*(mesh.Sf() & I*fvc::interpolate(tr(gradDU)))
- (muf + lambdaf)*(mesh.Sf() & fvc::interpolate(gradDU))
);
}
else if(divDSigmaExpMethod == "decompose")
{
snGradDU = fvc::snGrad(DU);
surfaceTensorField shearGradDU =
((I - n*n)&fvc::interpolate(gradDU));
surfaceTensorField shearGradDU = ((I - n*n) & fvc::interpolate(gradDU));
divDSigmaExp = fvc::div
(
mesh.magSf()
*(
- (muf + lambdaf)*(snGradDU&(I - n*n))
+ lambdaf*tr(shearGradDU&(I - n*n))*n
+ muf*(shearGradDU&n)
)
divDSigmaExp = fvc::div
(
mesh.magSf()*
(
- (muf + lambdaf)*(snGradDU & (I - n*n))
+ lambdaf*tr(shearGradDU & (I - n*n))*n
+ muf*(shearGradDU & n)
)
);
}
else if(divDSigmaExpMethod == "expLaplacian")
{
divDSigmaExp =
- fvc::laplacian(mu + lambda, DU, "laplacian(DDU,DU)")
+ fvc::div
(
mu*gradDU.T()
+ lambda*(I*tr(gradDU)),
"div(sigma)"
);
}
else
{
FatalError << "divDSigmaExp method " << divDSigmaExpMethod << " not found!" << endl;
}
}
else if(divDSigmaExpMethod == "expLaplacian")
{
divDSigmaExp =
- fvc::laplacian(mu + lambda, DU, "laplacian(DDU,DU)")
+ fvc::div(mu*gradDU.T() + lambda*(I*tr(gradDU)), "div(sigma)");
}
else
{
FatalErrorIn(args.executable())
<< "divDSigmaExp method " << divDSigmaExpMethod << " not found!"
<< abort(FatalError);
}

View file

@ -1,19 +1,19 @@
{
// force residual is the net force on the model
// this should got to zero in a converged steady state model
// should be altered for parallel runs
vector netForce = vector::zero;
forAll(mesh.boundary(), patchi)
// force residual is the net force on the model
// this should got to zero in a converged steady state model
// should be altered for parallel runs
vector netForce = vector::zero;
forAll(mesh.boundary(), patchi)
{
netForce +=
sum(
mesh.Sf().boundaryField()[patchi]
&
netForce += sum
(
2*mu.boundaryField()[patchi]*symm(gradU.boundaryField()[patchi])
+ lambda*tr(gradU.boundaryField()[patchi])*I
)
mesh.Sf().boundaryField()[patchi]
&
(
2*mu.boundaryField()[patchi]*symm(gradU.boundaryField()[patchi])
+ lambda*tr(gradU.boundaryField()[patchi])*I
)
);
}
forceResidual = mag(netForce);
forceResidual = mag(netForce);
}

View file

@ -1,22 +1,22 @@
{
surfaceVectorField n = mesh.Sf()/mesh.magSf();
// traction = (n&fvc::interpolate(sigma));
// traction = (n & fvc::interpolate(sigma));
// surfaceTensorField sGradU =
// ((I - n*n)&fvc::interpolate(gradU));
// ((I - n*n) & fvc::interpolate(gradU));
// traction =
// (2*mu + lambda)*snGradU
// - (mu + lambda)*(snGradU&(I - n*n))
// + mu*(sGradU&n)
// + mu*(sGradU & n)
// + lambda*tr(sGradU&(I - n*n))*n;
// traction =
// (2*mu + lambda)*fvc::snGrad(U)
// - (mu + lambda)*(n&sGradU)
// + mu*(sGradU&n)
// + lambda*tr(sGradU)*n;
// traction =
// (2*mu + lambda)*fvc::snGrad(U)
// - (mu + lambda)*(n & sGradU)
// + mu*(sGradU & n)
// + lambda*tr(sGradU)*n;
// philipc
// I am having trouble with back-calculation of interface tractions from solid interface
@ -27,15 +27,15 @@
traction = (n&fvc::interpolate(sigma+DSigma));
// forAll(traction.boundaryField(), patchi)
// {
// {
// if (mesh.boundary()[patchi].type() == "cohesive")
// {
// {
// forAll(traction.boundaryField()[patchi], facei)
// {
// Pout << "face " << facei << " with traction magnitude "
// << mag(traction.boundaryField()[patchi][facei])/1e6 << " MPa and traction "
// << traction.boundaryField()[patchi][facei]/1e6 << " MPa" << endl;
// }
// }
// }
// {
// Pout << "face " << facei << " with traction magnitude "
// << mag(traction.boundaryField()[patchi][facei])/1e6 << " MPa and traction "
// << traction.boundaryField()[patchi][facei]/1e6 << " MPa" << endl;
// }
// }
// }
}

View file

@ -1,53 +1,53 @@
label cohesivePatchID = -1;
solidCohesiveFvPatchVectorField* cohesivePatchDUPtr = NULL;
solidCohesiveFixedModeMixFvPatchVectorField* cohesivePatchDUFixedModePtr = NULL;
solidCohesiveFvPatchVectorField* cohesivePatchDUPtr = NULL;
solidCohesiveFixedModeMixFvPatchVectorField* cohesivePatchDUFixedModePtr = NULL;
forAll (DU.boundaryField(), patchI)
{
if (isA<solidCohesiveFvPatchVectorField>(DU.boundaryField()[patchI]))
if (isA<solidCohesiveFvPatchVectorField>(DU.boundaryField()[patchI]))
{
cohesivePatchID = patchI;
cohesivePatchDUPtr =
&refCast<solidCohesiveFvPatchVectorField>
(
DU.boundaryField()[cohesivePatchID]
);
break;
cohesivePatchID = patchI;
cohesivePatchDUPtr =
&refCast<solidCohesiveFvPatchVectorField>
(
DU.boundaryField()[cohesivePatchID]
);
break;
}
else if (isA<solidCohesiveFixedModeMixFvPatchVectorField>(DU.boundaryField()[patchI]))
{
cohesivePatchID = patchI;
cohesivePatchDUFixedModePtr =
&refCast<solidCohesiveFixedModeMixFvPatchVectorField>
(
DU.boundaryField()[cohesivePatchID]
);
break;
}
else if (isA<solidCohesiveFixedModeMixFvPatchVectorField>(DU.boundaryField()[patchI]))
{
cohesivePatchID = patchI;
cohesivePatchDUFixedModePtr =
&refCast<solidCohesiveFixedModeMixFvPatchVectorField>
(
DU.boundaryField()[cohesivePatchID]
);
break;
}
}
if(cohesivePatchID == -1)
{
FatalErrorIn(args.executable())
<< "Can't find cohesiveLawFvPatch" << nl
<< "One of the boundary patches in " << DU.name() << ".boundaryField() "
<< "should be of type " << solidCohesiveFvPatchVectorField::typeName
<< "or " << solidCohesiveFixedModeMixFvPatchVectorField::typeName
<< abort(FatalError);
<< "One of the boundary patches in " << DU.name() << ".boundaryField() "
<< "should be of type " << solidCohesiveFvPatchVectorField::typeName
<< "or " << solidCohesiveFixedModeMixFvPatchVectorField::typeName
<< abort(FatalError);
}
// solidCohesiveFvPatchVectorField& cohesivePatchDU =
// refCast<solidCohesiveFvPatchVectorField>
// (
// DU.boundaryField()[cohesivePatchID]
// DU.boundaryField()[cohesivePatchID]
// );
// philipc: I have moved cohesive stuff to constitutiveModel
// cohesiveZone is an index field
// which allows the user to limit the crack to certain areas at runtime
// 1 for faces within cohesiveZone
// 0 for faces outside cohesiveZone
// philipc: I have moved cohesive stuff to constitutiveModel
// cohesiveZone is an index field
// which allows the user to limit the crack to certain areas at runtime
// 1 for faces within cohesiveZone
// 0 for faces outside cohesiveZone
surfaceScalarField cohesiveZone
(
IOobject
@ -59,110 +59,111 @@
IOobject::AUTO_WRITE
),
mesh,
//dimensionedScalar("one", dimless, 1.0)
dimensionedScalar("zero", dimless, 0.0)
);
// limit crack to specified boxes
{
const dictionary& stressControl =
mesh.solutionDict().subDict("solidMechanics");
const dictionary& stressControl =
mesh.solutionDict().subDict("solidMechanics");
List<boundBox> userBoxes(stressControl.lookup("crackLimitingBoxes"));
const surfaceVectorField& Cf = mesh.Cf();
//int numPossibleCrackFaces = 0;
forAll(cohesiveZone.internalField(), faceI)
{
bool faceInsideBox = false;
forAll(userBoxes, boxi)
List<boundBox> userBoxes(stressControl.lookup("crackLimitingBoxes"));
const surfaceVectorField& Cf = mesh.Cf();
//int numPossibleCrackFaces = 0;
forAll(cohesiveZone.internalField(), faceI)
{
if(userBoxes[boxi].contains(Cf.internalField()[faceI])) faceInsideBox = true;
}
bool faceInsideBox = false;
if(faceInsideBox)
{
cohesiveZone.internalField()[faceI] = 1.0;
//numPossibleCrackFaces++;
}
}
//reduce(numPossibleCrackFaces, sumOp<int>());
forAll(cohesiveZone.boundaryField(), patchI)
{
// cracks may go along proc boundaries
if(mesh.boundaryMesh()[patchI].type() == processorPolyPatch::typeName)
{
forAll(cohesiveZone.boundaryField()[patchI], faceI)
{
bool faceInsideBox = false;
forAll(userBoxes, boxi)
forAll(userBoxes, boxi)
{
if(userBoxes[boxi].contains(Cf.boundaryField()[patchI][faceI])) faceInsideBox = true;
if(userBoxes[boxi].contains(Cf.internalField()[faceI])) faceInsideBox = true;
}
if(faceInsideBox)
if(faceInsideBox)
{
cohesiveZone.boundaryField()[patchI][faceI] = 1.0;
cohesiveZone.internalField()[faceI] = 1.0;
//numPossibleCrackFaces++;
}
}
//reduce(numPossibleCrackFaces, sumOp<int>());
// numPossibleCrackFaces += int(sum(cohesiveZone.boundaryField()[patchI]));
// philipc multiMat cracks not working on proc boundaries yet... disable for now
// found the problem: solidInterface needs to know about mesh changes so
// I make a new one each time there is a crack
// int numProcFaces = int(sum(cohesiveZone.boundaryField()[patchI]));
forAll(cohesiveZone.boundaryField(), patchI)
{
// cracks may go along proc boundaries
if(mesh.boundaryMesh()[patchI].type() == processorPolyPatch::typeName)
{
forAll(cohesiveZone.boundaryField()[patchI], faceI)
{
bool faceInsideBox = false;
forAll(userBoxes, boxi)
{
if(userBoxes[boxi].contains(Cf.boundaryField()[patchI][faceI])) faceInsideBox = true;
}
if(faceInsideBox)
{
cohesiveZone.boundaryField()[patchI][faceI] = 1.0;
}
}
// numPossibleCrackFaces += int(sum(cohesiveZone.boundaryField()[patchI]));
// philipc multiMat cracks not working on proc boundaries yet... disable for now
// found the problem: solidInterface needs to know about mesh changes so
// I make a new one each time there is a crack
// int numProcFaces = int(sum(cohesiveZone.boundaryField()[patchI]));
// if(numProcFaces > 0)
// {
// cohesiveZone.boundaryField()[patchI] = 0.0;
// Warning << "Processor boundary cracking is "
// << "disabled because it is not working yet for multi-materials." << nl
// << "There are " << numProcFaces << " possible cracks "
// << "faces on processor boundary " << mesh.boundary()[patchI].name()
// << ", which are not allowed to crack." << endl;
// }
// {
// cohesiveZone.boundaryField()[patchI] = 0.0;
// Warning << "Processor boundary cracking is "
// << "disabled because it is not working yet for multi-materials." << nl
// << "There are " << numProcFaces << " possible cracks "
// << "faces on processor boundary " << mesh.boundary()[patchI].name()
// << ", which are not allowed to crack." << endl;
// }
}
}
}
// Info << "\nNumber of possible cracking faces is " << numPossibleCrackFaces << endl;
Info << "\nThere are " << gSum(cohesiveZone.internalField()) << " potential internal crack faces" << nl << endl;
Info << "\nThere are " << gSum(cohesiveZone.boundaryField())/2 << " potential coupled boundary crack faces" << nl << endl;
// Info << "\nNumber of possible cracking faces is " << numPossibleCrackFaces << endl;
Info << "\nThere are " << gSum(cohesiveZone.internalField()) << " potential internal crack faces" << nl << endl;
Info << "\nThere are " << gSum(cohesiveZone.boundaryField())/2 << " potential coupled boundary crack faces" << nl << endl;
// write field for visualisation
volScalarField cohesiveZoneVol
(
IOobject
(
"cohesiveZoneVol",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0)
);
forAll(cohesiveZone.internalField(), facei)
{
if(cohesiveZone.internalField()[facei])
// write field for visualisation
volScalarField cohesiveZoneVol
(
IOobject
(
"cohesiveZoneVol",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0)
);
forAll(cohesiveZone.internalField(), facei)
{
cohesiveZoneVol.internalField()[mesh.owner()[facei]] = 1.0;
cohesiveZoneVol.internalField()[mesh.neighbour()[facei]] = 1.0;
if(cohesiveZone.internalField()[facei])
{
cohesiveZoneVol.internalField()[mesh.owner()[facei]] = 1.0;
cohesiveZoneVol.internalField()[mesh.neighbour()[facei]] = 1.0;
}
}
}
forAll(cohesiveZone.boundaryField(), patchi)
{
forAll(cohesiveZone.boundaryField()[patchi], facei)
forAll(cohesiveZone.boundaryField(), patchi)
{
if(cohesiveZone.boundaryField()[patchi][facei])
{
cohesiveZoneVol.boundaryField()[patchi][facei] = 1.0;
forAll(cohesiveZone.boundaryField()[patchi], facei)
{
if(cohesiveZone.boundaryField()[patchi][facei] > 0.0)
{
cohesiveZoneVol.boundaryField()[patchi][facei] = 1.0;
}
}
}
}
}
Info << "Writing cohesiveZone field" << endl;
cohesiveZoneVol.write();
Info << "Writing cohesiveZone field" << endl;
cohesiveZoneVol.write();
}

View file

@ -36,8 +36,8 @@
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimless, vector::zero)
mesh,
dimensionedVector("zero", dimless, vector::zero)
);
Info<< "Creating field U\n" << endl;
@ -59,15 +59,15 @@
(
IOobject
(
"DEpsilon",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
"DEpsilon",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedSymmTensor("zero", dimless, symmTensor::zero)
);
);
volSymmTensorField DSigma
(
@ -111,23 +111,23 @@
dimensionedSymmTensor("zero", dimForce/dimArea, symmTensor::zero)
);
volVectorField divDSigmaExp
(
volVectorField divDSigmaExp
(
IOobject
(
"divDSigmaExp",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
"divDSigmaExp",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimForce/dimVolume, vector::zero)
);
);
constitutiveModel rheology(sigma, DU);
constitutiveModel rheology(sigma, DU);
//solidInterface interface(mesh, rheology);
// solidInterface* interfacePtr = new solidInterface(mesh, rheology);
//solidInterface* interfacePtr = new solidInterface(mesh, rheology);
surfaceVectorField traction
(
@ -143,8 +143,8 @@ constitutiveModel rheology(sigma, DU);
dimensionedVector("zero", dimForce/dimArea, vector::zero)
);
// for aitken relaxation
volVectorField aitkenDelta
// for aitken relaxation
volVectorField aitkenDelta
(
IOobject
(
@ -155,8 +155,9 @@ constitutiveModel rheology(sigma, DU);
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimLength, vector::zero)
dimensionedVector("zero", dimLength, vector::zero)
);
// aitken relaxation factor
scalar aitkenInitialRes = 1.0;
scalar aitkenTheta = 0.1;
// aitken relaxation factor
scalar aitkenInitialRes = 1.0;
scalar aitkenTheta = 0.1;

View file

@ -2,17 +2,17 @@ OFstream * filePtr(NULL);
word historyPatchName(mesh.solutionDict().subDict("solidMechanics").lookup("historyPatch"));
label historyPatchID = mesh.boundaryMesh().findPatchID(historyPatchName);
if(historyPatchID == -1)
{
{
Warning << "history patch " << historyPatchName
<< " not found. Force-displacement will not be written"
<< endl;
}
else if(Pstream::master())
{
}
else if(Pstream::master())
{
Info << "Force-displacement for patch " << historyPatchName
<< " will be written to forceDisp.dat"
<< endl;
filePtr = new OFstream("forceDisp.dat");
OFstream& forceDispFile = *filePtr;
forceDispFile << "#Disp(mm)\tForce(N)" << endl;
}
}

View file

@ -34,6 +34,7 @@ Author
Philip Cardiff UCD
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "constitutiveModel.H"
//#include "componentReferenceList.H"
@ -48,196 +49,197 @@ Author
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createCrackerMesh.H"
# include "createFields.H"
# include "createCrack.H"
//# include "createReference.H"
# include "createHistory.H"
# include "readDivDSigmaExpMethod.H"
# include "createSolidInterfaceIncrNoModify.H"
# include "setRootCase.H"
# include "createTime.H"
# include "createCrackerMesh.H"
# include "createFields.H"
# include "createCrack.H"
//# include "createReference.H"
# include "createHistory.H"
# include "readDivDSigmaExpMethod.H"
# include "createSolidInterfaceIncrNoModify.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
Info<< "\nStarting time loop\n" << endl;
lduMatrix::debug = 0;
lduMatrix::debug = 0;
scalar maxEffTractionFraction = 0;
scalar maxEffTractionFraction = 0;
while (runTime.run())
while (runTime.run())
{
# include "readSolidMechanicsControls.H"
# include "setDeltaT.H"
# include "readSolidMechanicsControls.H"
# include "setDeltaT.H"
runTime++;
runTime++;
Info<< "\nTime: " << runTime.timeName() << " s\n" << endl;
Info<< "\nTime = " << runTime.timeName() << " s\n" << endl;
volScalarField rho = rheology.rho();
volScalarField mu = rheology.mu();
volScalarField lambda = rheology.lambda();
surfaceScalarField muf = fvc::interpolate(mu);
surfaceScalarField lambdaf = fvc::interpolate(lambda);
volScalarField rho = rheology.rho();
volScalarField mu = rheology.mu();
volScalarField lambda = rheology.lambda();
surfaceScalarField muf = fvc::interpolate(mu);
surfaceScalarField lambdaf = fvc::interpolate(lambda);
solidInterfacePtr->modifyProperties(muf, lambdaf);
//# include "waveCourantNo.H"
solidInterfacePtr->modifyProperties(muf, lambdaf);
//# include "waveCourantNo.H"
int iCorr = 0;
lduMatrix::solverPerformance solverPerf;
scalar initialResidual = 0;
scalar relativeResidual = 1;
//scalar forceResidual = 1;
label nFacesToBreak = 0;
label nCoupledFacesToBreak = 0;
bool topoChange = false;
int iCorr = 0;
lduMatrix::solverPerformance solverPerf;
scalar initialResidual = 0;
scalar relativeResidual = 1;
//scalar forceResidual = 1;
label nFacesToBreak = 0;
label nCoupledFacesToBreak = 0;
bool topoChange = false;
// DU from the previous timestep is usually a good guess
// for the next timestep, but it can cause faces to prematurely
// crack.
// so I will reduce DU here to stop this happening
if (!predictor)
{
DU *= 0.0;
}
// DU from the previous timestep is usually a good guess
// for the next timestep, but it can cause faces to prematurely
// crack.
// so I will reduce DU here to stop this happening
if (!predictor)
{
DU *= 0.0;
}
do
{
surfaceVectorField n = mesh.Sf()/mesh.magSf();
do
{
DU.storePrevIter();
do
{
surfaceVectorField n = mesh.Sf()/mesh.magSf();
do
{
DU.storePrevIter();
# include "calculateDivDSigmaExp.H"
# include "calculateDivDSigmaExp.H"
fvVectorMatrix DUEqn
(
rho*fvm::d2dt2(DU)
==
fvm::laplacian(2*muf + lambdaf, DU, "laplacian(DDU,DU)")
+ divDSigmaExp
);
fvVectorMatrix DUEqn
(
rho*fvm::d2dt2(DU)
==
fvm::laplacian(2*muf + lambdaf, DU, "laplacian(DDU,DU)")
+ divDSigmaExp
);
//# include "setReference.H"
//# include "setReference.H"
if(solidInterfacePtr)
{
solidInterfacePtr->correct(DUEqn);
}
if(solidInterfacePtr)
{
solidInterfacePtr->correct(DUEqn);
}
//DUEqn.relax();
//DUEqn.relax();
solverPerf = DUEqn.solve();
solverPerf = DUEqn.solve();
if (aitkenRelax)
{
# include "aitkenRelaxation.H"
}
else
{
DU.relax();
}
if (aitkenRelax)
{
# include "aitkenRelaxation.H"
}
else
{
DU.relax();
}
if (iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
aitkenInitialRes = gMax(mag(DU.internalField()));
}
if (iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
aitkenInitialRes = gMax(mag(DU.internalField()));
}
//gradDU = solidInterfacePtr->grad(DU);
// use leastSquaresSolidInterface grad scheme
gradDU = fvc::grad(DU);
//gradDU = solidInterfacePtr->grad(DU);
// use leastSquaresSolidInterface grad scheme
gradDU = fvc::grad(DU);
# include "calculateRelativeResidual.H"
# include "calculateRelativeResidual.H"
if (iCorr % infoFrequency == 0)
{
Info << "\tTime " << runTime.value()
<< ", Corr " << iCorr
<< ", Solving for " << DU.name()
<< " using " << solverPerf.solverName()
<< ", res = " << solverPerf.initialResidual()
<< ", rel res = " << relativeResidual;
if (aitkenRelax)
{
Info << ", aitken = " << aitkenTheta;
}
Info << ", inner iters " << solverPerf.nIterations() << endl;
}
}
while
(
//iCorr++ == 0
iCorr++ < 10
||
(
//solverPerf.initialResidual() > convergenceTolerance
relativeResidual > convergenceTolerance
&&
iCorr < nCorr
)
);
if (iCorr % infoFrequency == 0)
{
Info<< "\tTime " << runTime.value()
<< ", Corr " << iCorr
<< ", Solving for " << DU.name()
<< " using " << solverPerf.solverName()
<< ", res = " << solverPerf.initialResidual()
<< ", rel res = " << relativeResidual;
if (aitkenRelax)
{
Info << ", aitken = " << aitkenTheta;
}
Info << ", inner iters " << solverPerf.nIterations() << endl;
}
}
while
(
//iCorr++ == 0
iCorr++ < 10
||
(
//solverPerf.initialResidual() > convergenceTolerance
relativeResidual > convergenceTolerance
&&
iCorr < nCorr
)
);
Info<< "Solving for " << DU.name() << " using "
<< solverPerf.solverName()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", No outer iterations " << iCorr
<< ", Relative residual " << relativeResidual << endl;
Info<< "Solving for " << DU.name() << " using "
<< solverPerf.solverName()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", No outer iterations " << iCorr
<< ", Relative residual " << relativeResidual << endl;
# include "calculateTraction.H"
# include "updateCrack.H"
# include "calculateTraction.H"
# include "updateCrack.H"
Info<< "Max effective traction fraction: "
<< maxEffTractionFraction << endl;
Info<< "Max effective traction fraction: "
<< maxEffTractionFraction << endl;
// reset counter if faces want to crack
if ((nFacesToBreak > 0) || (nCoupledFacesToBreak > 0)) iCorr = 0;
}
while( (nFacesToBreak > 0) || (nCoupledFacesToBreak > 0));
// reset counter if faces want to crack
if ((nFacesToBreak > 0) || (nCoupledFacesToBreak > 0)) iCorr = 0;
}
while( (nFacesToBreak > 0) || (nCoupledFacesToBreak > 0));
if (cohesivePatchDUPtr)
{
if (returnReduce(cohesivePatchDUPtr->size(), sumOp<label>()))
{
cohesivePatchDUPtr->cracking();
}
}
else
{
if
(
returnReduce
(
cohesivePatchDUFixedModePtr->size(),
sumOp<label>())
)
{
Pout << "Number of faces in crack: "
<< cohesivePatchDUFixedModePtr->size() << endl;
cohesivePatchDUFixedModePtr->relativeSeparationDistance();
}
}
if (cohesivePatchDUPtr)
{
if (returnReduce(cohesivePatchDUPtr->size(), sumOp<label>()))
{
cohesivePatchDUPtr->cracking();
}
}
else
{
if
(
returnReduce
(
cohesivePatchDUFixedModePtr->size(),
sumOp<label>()
)
)
{
Pout << "Number of faces in crack: "
<< cohesivePatchDUFixedModePtr->size() << endl;
cohesivePatchDUFixedModePtr->relativeSeparationDistance();
}
}
# include "calculateDEpsilonDSigma.H"
# include "calculateDEpsilonDSigma.H"
// update total quantities
U += DU;
epsilon += DEpsilon;
sigma += DSigma;
// update total quantities
U += DU;
epsilon += DEpsilon;
sigma += DSigma;
# include "writeFields.H"
# include "writeHistory.H"
# include "writeFields.H"
# include "writeHistory.H"
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s\n\n"
<< endl;
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s\n\n"
<< endl;
}
Info<< "End\n" << endl;
Info<< "End\n" << endl;
return(0);
return(0);
}

View file

@ -4,6 +4,6 @@ Info << "Selecting divDSigmaExp calculation method " << divDSigmaExpMethod << e
if(divDSigmaExpMethod != "standard" && divDSigmaExpMethod != "surface" && divDSigmaExpMethod != "decompose" && divDSigmaExpMethod != "laplacian")
{
FatalError << "divDSigmaExp method " << divDSigmaExpMethod << " not found!" << nl
<< "valid methods are:\nstandard\nsurface\ndecompose\nlaplacian"
<< exit(FatalError);
<< "valid methods are:\nstandard\nsurface\ndecompose\nlaplacian"
<< exit(FatalError);
}

View file

@ -1,36 +1,36 @@
if (dynamicTimeStep)
{
{
if
(
//(maxEffTraction < 0.999*CzLaw.sigmaMax().value())
(returnReduce(maxEffTractionFraction, maxOp<scalar>()) < 0.99)
//&& (cohesivePatchU.size() == 0)
&& (mag(runTime.deltaT().value() - deltaTmax) < SMALL)
)
{
(
//(maxEffTraction < 0.999*CzLaw.sigmaMax().value())
(returnReduce(maxEffTractionFraction, maxOp<scalar>()) < 0.99)
//&& (cohesivePatchU.size() == 0)
&& (mag(runTime.deltaT().value() - deltaTmax) < SMALL)
)
{
runTime.setDeltaT(deltaTmax);
}
}
else
{
{
scalar newDeltaT = deltaTmin;
if (newDeltaT/runTime.deltaT().value() < 0.5)
{
{
newDeltaT = 0.5*runTime.deltaT().value();
Info << "Reducing time step" << nl;
}
}
runTime.setDeltaT(newDeltaT);
}
}
Pout << "Current time step size: "
<< runTime.deltaT().value() << " s" << endl;
<< runTime.deltaT().value() << " s" << endl;
scalar maxDT = runTime.deltaT().value();
if(mag(returnReduce(maxDT, maxOp<scalar>()) - runTime.deltaT().value()) > SMALL)
{
{
FatalError << "Processors have different time-steps!"
<< exit(FatalError);
}
}
<< exit(FatalError);
}
}

View file

@ -10,15 +10,15 @@ nCoupledFacesToBreak = 0;
cohesiveZone.internalField()*
( n.internalField() & traction.internalField() );
// only consider tensile tractions
// only consider tensile tractions
normalTraction = max(normalTraction, scalar(0));
scalarField shearTraction =
cohesiveZone.internalField() *
cohesiveZone.internalField()*
mag( (I - Foam::sqr(n.internalField())) & traction.internalField() );
// the traction fraction is monitored to decide which faces to break:
// ie (tN/tNC)^2 + (tS/tSC)^2 >1 to crack a face
const surfaceScalarField sigmaMax = rheology.cohLaw().sigmaMax();
const surfaceScalarField tauMax = rheology.cohLaw().tauMax();
@ -91,6 +91,7 @@ nCoupledFacesToBreak = 0;
faceToBreakIndex = facesToBreak[faceI];
}
}
scalar gMaxEffTractionFraction =
returnReduce(faceToBreakEffTractionFraction, maxOp<scalar>());
@ -111,7 +112,6 @@ nCoupledFacesToBreak = 0;
}
// Check if maximum is present on more then one processors
label procID = Pstream::nProcs();
if (procHasFaceToBreak)
{
@ -132,46 +132,47 @@ nCoupledFacesToBreak = 0;
SLList<label> coupledFacesToBreakList;
SLList<scalar> coupledFacesToBreakEffTractionFractionList;
forAll(mesh.boundary(), patchI)
{
if (mesh.boundary()[patchI].coupled())
{
// scalarField pEffTraction =
// cohesiveZone.boundaryField()[patchI] *
// mag(traction.boundaryField()[patchI]);
// scalarField pEffTractionFraction = pEffTraction/sigmaMax.boundaryField()[patchI];
// cohesiveZone.boundaryField()[patchI]*
// mag(traction.boundaryField()[patchI]);
// scalarField pEffTractionFraction = pEffTraction/sigmaMax.boundaryField()[patchI];
scalarField pNormalTraction =
cohesiveZone.boundaryField()[patchI]*
( n.boundaryField()[patchI] & traction.boundaryField()[patchI] );
scalarField pNormalTraction =
cohesiveZone.boundaryField()[patchI]*
( n.boundaryField()[patchI] & traction.boundaryField()[patchI] );
// only consider tensile tractions
pNormalTraction = max(pNormalTraction, scalar(0));
// only consider tensile tractions
pNormalTraction = max(pNormalTraction, scalar(0));
scalarField pShearTraction =
cohesiveZone.boundaryField()[patchI] *
mag( (I - Foam::sqr(n.boundaryField()[patchI])) & traction.boundaryField()[patchI] );
scalarField pShearTraction =
cohesiveZone.boundaryField()[patchI]*
mag( (I - Foam::sqr(n.boundaryField()[patchI])) & traction.boundaryField()[patchI] );
// the traction fraction is monitored to decide which faces to break:
// ie (tN/tNC)^2 + (tS/tSC)^2 >1 to crack a face
const scalarField& pSigmaMax = sigmaMax.boundaryField()[patchI];
const scalarField& pTauMax = tauMax.boundaryField()[patchI];
// the traction fraction is monitored to decide which faces to break:
// ie (tN/tNC)^2 + (tS/tSC)^2 >1 to crack a face
const scalarField& pSigmaMax = sigmaMax.boundaryField()[patchI];
const scalarField& pTauMax = tauMax.boundaryField()[patchI];
// scalarField pEffTractionFraction =
// (pNormalTraction/pSigmaMax)*(pNormalTraction/pSigmaMax) + (pShearTraction/pTauMax)*(pShearTraction/pTauMax);
scalarField pEffTractionFraction(pNormalTraction.size(), 0.0);
if(cohesivePatchDUPtr)
{
pEffTractionFraction =
(pNormalTraction/pSigmaMax)*(pNormalTraction/pSigmaMax) + (pShearTraction/pTauMax)*(pShearTraction/pTauMax);
}
else
{
// solidCohesiveFixedModeMix only uses sigmaMax
pEffTractionFraction =
(pNormalTraction/pSigmaMax)*(pNormalTraction/pSigmaMax) + (pShearTraction/pSigmaMax)*(pShearTraction/pSigmaMax);
}
// scalarField pEffTractionFraction =
// (pNormalTraction/pSigmaMax)*(pNormalTraction/pSigmaMax) + (pShearTraction/pTauMax)*(pShearTraction/pTauMax);
scalarField pEffTractionFraction(pNormalTraction.size(), 0.0);
if(cohesivePatchDUPtr)
{
pEffTractionFraction =
(pNormalTraction/pSigmaMax)*(pNormalTraction/pSigmaMax)
+ (pShearTraction/pTauMax)*(pShearTraction/pTauMax);
}
else
{
// solidCohesiveFixedModeMix only uses sigmaMax
pEffTractionFraction =
(pNormalTraction/pSigmaMax)*(pNormalTraction/pSigmaMax)
+ (pShearTraction/pSigmaMax)*(pShearTraction/pSigmaMax);
}
label start = mesh.boundaryMesh()[patchI].start();
@ -182,9 +183,9 @@ nCoupledFacesToBreak = 0;
maxEffTractionFraction = pEffTractionFraction[faceI];
}
if (pEffTractionFraction[faceI] > 1.0)
if (pEffTractionFraction[faceI] > 1.0)
{
//Pout << "coupled face to break " << faceI << endl;
//Pout << "coupled face to break " << faceI << endl;
coupledFacesToBreakList.insert(start + faceI);
coupledFacesToBreakEffTractionFractionList.insert
(
@ -227,7 +228,6 @@ nCoupledFacesToBreak = 0;
}
}
scalar gMaxCoupledEffTractionFraction =
returnReduce(coupledFaceToBreakEffTractionFraction, maxOp<scalar>());
@ -249,7 +249,6 @@ nCoupledFacesToBreak = 0;
}
// Check if maximum is present on more then one processors
label procID = Pstream::nProcs();
if (procHasCoupledFaceToBreak)
{
@ -283,6 +282,7 @@ nCoupledFacesToBreak = 0;
{
label patchID =
mesh.boundaryMesh().whichPatch(coupledFaceToBreakIndex);
label start = mesh.boundaryMesh()[patchID].start();
label localIndex = coupledFaceToBreakIndex - start;
@ -347,30 +347,38 @@ nCoupledFacesToBreak = 0;
faceToBreakNormal = n.internalField()[faceToBreakIndex];
// Scale broken face traction
// The scale factor is derived by solving the following eqn for alpha:
// (alpha*tN/tNC)^2 + (alpha*tS/tSC)^2 = 1
faceToBreakSigmaMax = sigmaMaxI[faceToBreakIndex];
faceToBreakTauMax = tauMaxI[faceToBreakIndex];
scalar normalTrac = faceToBreakNormal & faceToBreakTraction;
normalTrac = max(normalTrac, 0.0);
scalar shearTrac = mag( (I - sqr(faceToBreakNormal)) & faceToBreakTraction );
scalar scaleFactor = 1;
if(cohesivePatchDUPtr)
{
scaleFactor =
::sqrt(1 / (
(normalTrac/faceToBreakSigmaMax)*(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakTauMax)*(shearTrac/faceToBreakTauMax)
) );
}
else
// The scale factor is derived by solving the following eqn for alpha:
// (alpha*tN/tNC)^2 + (alpha*tS/tSC)^2 = 1
faceToBreakSigmaMax = sigmaMaxI[faceToBreakIndex];
faceToBreakTauMax = tauMaxI[faceToBreakIndex];
scalar normalTrac = faceToBreakNormal & faceToBreakTraction;
normalTrac = max(normalTrac, 0.0);
scalar shearTrac = mag( (I - sqr(faceToBreakNormal)) & faceToBreakTraction );
scalar scaleFactor = 1;
if(cohesivePatchDUPtr)
{
// solidCohesiveFixedModeMix only uses sigmaMax
scaleFactor =
::sqrt(1 / (
(normalTrac/faceToBreakSigmaMax)*(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakSigmaMax)*(shearTrac/faceToBreakSigmaMax)
) );
scaleFactor =
Foam::sqrt
(
1 /
(
(normalTrac/faceToBreakSigmaMax)*(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakTauMax)*(shearTrac/faceToBreakTauMax)
)
);
}
else
{
// solidCohesiveFixedModeMix only uses sigmaMax
scaleFactor =
Foam::sqrt
(
1 /
(
(normalTrac/faceToBreakSigmaMax)*(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakSigmaMax)*(shearTrac/faceToBreakSigmaMax)
)
);
}
faceToBreakTraction *= scaleFactor;
@ -388,44 +396,41 @@ nCoupledFacesToBreak = 0;
faceToBreakNormal = n.boundaryField()[patchID][localIndex];
// Scale broken face traction
faceToBreakSigmaMax = sigmaMax.boundaryField()[patchID][localIndex];
faceToBreakTauMax = tauMax.boundaryField()[patchID][localIndex];
scalar normalTrac = faceToBreakNormal & faceToBreakTraction;
normalTrac = max(normalTrac, scalar(0));
scalar shearTrac = mag( (I - sqr(faceToBreakNormal)) & faceToBreakTraction );
scalar scaleFactor = 1;
if(cohesivePatchDUPtr)
{
scaleFactor =
Foam::sqrt
(
1/
faceToBreakSigmaMax = sigmaMax.boundaryField()[patchID][localIndex];
faceToBreakTauMax = tauMax.boundaryField()[patchID][localIndex];
scalar normalTrac = faceToBreakNormal & faceToBreakTraction;
normalTrac = max(normalTrac, 0.0);
scalar shearTrac = mag( (I - sqr(faceToBreakNormal)) & faceToBreakTraction );
scalar scaleFactor = 1;
if(cohesivePatchDUPtr)
{
scaleFactor =
Foam::sqrt
(
(normalTrac/faceToBreakSigmaMax)*
(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakTauMax)*(shearTrac/faceToBreakTauMax)
)
);
}
else
{
// solidCohesiveFixedModeMix only uses sigmaMax
scaleFactor =
Foam::sqrt
(
1/
1 /
(
(normalTrac/faceToBreakSigmaMax)*(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakTauMax)*(shearTrac/faceToBreakTauMax)
)
);
}
else
{
// solidCohesiveFixedModeMix only uses sigmaMax
scaleFactor =
Foam::sqrt
(
(normalTrac/faceToBreakSigmaMax)*
(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakSigmaMax)*
(shearTrac/faceToBreakSigmaMax)
)
);
}
1 /
(
(normalTrac/faceToBreakSigmaMax)*(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakSigmaMax)*(shearTrac/faceToBreakSigmaMax)
)
);
}
faceToBreakTraction *= scaleFactor;
faceToBreakTraction *= scaleFactor;
topoChange = true;
topoChange = true;
}
reduce(topoChange, orOp<bool>());
@ -447,7 +452,7 @@ nCoupledFacesToBreak = 0;
Pout << "Coupled face to break: " << coupledFaceToBreak << endl;
mesh.setBreak(faceToBreak, faceToBreakFlip, coupledFaceToBreak);
mesh.update();
mesh.update();
const labelList& faceMap = mesh.topoChangeMap().faceMap();
label start = mesh.boundaryMesh()[cohesivePatchID].start();
@ -457,19 +462,19 @@ nCoupledFacesToBreak = 0;
muf = fvc::interpolate(mu);
lambdaf = fvc::interpolate(lambda);
// we need to modify propertiess after cracking otherwise momentum equation is wrong
// but solidInterface seems to hold some information about old mesh
// so we will delete it and make another
// we could probably add a public clearout function
// create new solidInterface
if(rheology.solidInterfaceActive())
{
rheology.solInterface().clearOut();
solidInterfacePtr->modifyProperties(muf, lambdaf);
}
// we need to modify propertiess after cracking otherwise momentum equation is wrong
// but solidInterface seems to hold some information about old mesh
// so we will delete it and make another
// we could probably add a public clearout function
// create new solidInterface
if(rheology.solidInterfaceActive())
{
rheology.solInterface().clearOut();
solidInterfacePtr->modifyProperties(muf, lambdaf);
}
// All values on the new crack faces get set to zero
// so we must manually correct them
// so we must manually correct them
const vectorField DUpI =
DU.boundaryField()[cohesivePatchID].patchInternalField();
const vectorField oldDUpI =
@ -492,8 +497,8 @@ nCoupledFacesToBreak = 0;
const scalarField globalMuPI = mesh.globalCrackField(muPI);
const scalarField globalLambdaPI = mesh.globalCrackField(lambdaPI);
// cohesivePatchU.size()
int cohesivePatchSize(cohesivePatchDUPtr ? cohesivePatchDUPtr->size() : cohesivePatchDUFixedModePtr->size());
// cohesivePatchU.size()
int cohesivePatchSize(cohesivePatchDUPtr ? cohesivePatchDUPtr->size() : cohesivePatchDUFixedModePtr->size());
// Initialise fields for new cohesive face
const labelList& gcfa = mesh.globalCrackFaceAddressing();
@ -506,9 +511,9 @@ nCoupledFacesToBreak = 0;
// If new face
if (oldFaceIndex == faceToBreakIndex)
{
// set to average of old cell centres
// hmnnn it would be better to interpolate
// using weights... OK for now: future work
// set to average of old cell centres
// hmnnn it would be better to interpolate
// using weights... OK for now: future work
DU.boundaryField()[cohesivePatchID][i] =
0.5
*(
@ -540,10 +545,10 @@ nCoupledFacesToBreak = 0;
+ globalsigmapI[gcfa[globalIndex]]
);
// initialise mu and lambda on new faces
// set new face value to value of internal cell
muf.boundaryField()[cohesivePatchID][i] = globalMuPI[globalIndex];
lambdaf.boundaryField()[cohesivePatchID][i] = globalLambdaPI[globalIndex];
// initialise mu and lambda on new faces
// set new face value to value of internal cell
muf.boundaryField()[cohesivePatchID][i] = globalMuPI[globalIndex];
lambdaf.boundaryField()[cohesivePatchID][i] = globalLambdaPI[globalIndex];
globalIndex++;
}
@ -554,24 +559,24 @@ nCoupledFacesToBreak = 0;
}
// we must calculate grad using interface
// DU at the interface has not been calculated yet as interface.correct()
// has not been called yet
// not really a problem as gradDU is correct in second outer iteration
// as long as this does not cause convergence problems for the first iterations.
// we should be able to calculate the interface displacements without
// having to call interface.correct()
// todo: add calculateInterfaceDU() function
// interface grad uses Gauss, we need least squares
// DU at the interface has not been calculated yet as interface.correct()
// has not been called yet
// not really a problem as gradDU is correct in second outer iteration
// as long as this does not cause convergence problems for the first iterations.
// we should be able to calculate the interface displacements without
// having to call interface.correct()
// todo: add calculateInterfaceDU() function
// interface grad uses Gauss, we need least squares
gradDU = fvc::grad(DU); // leastSquaresSolidInterface grad scheme
//gradDU = solidInterfacePtr->grad(DU);
//gradDU = solidInterfacePtr->grad(DU);
//snGradDU = fvc::snGrad(DU);
# include "calculateTraction.H"
//if (nFacesToBreak || nCoupledFacesToBreak) mesh.write(); traction.write();
//if (nFacesToBreak || nCoupledFacesToBreak) mesh.write(); traction.write();
// Initialise initiation traction for new cohesive patch face
// we also need to update the traction_ field in the crack boundary condition
// this is because it cannot set itself during mapping.
// we also need to update the traction_ field in the crack boundary condition
// this is because it cannot set itself during mapping.
//for (label i=0; i<cohesivePatchDU.size(); i++)
for (label i=0; i<cohesivePatchSize; i++)
{
@ -589,51 +594,52 @@ nCoupledFacesToBreak = 0;
/mesh.magSf().boundaryField()[cohesivePatchID][i];
//vector n1 = -n0;
if ((n0&faceToBreakNormal) > SMALL)
if ((n0 & faceToBreakNormal) > SMALL)
{
traction.boundaryField()[cohesivePatchID][i] =
faceToBreakTraction;
traction.boundaryField()[cohesivePatchID][i] =
faceToBreakTraction;
traction.oldTime().boundaryField()[cohesivePatchID][i] =
faceToBreakTraction;
traction.oldTime().boundaryField()[cohesivePatchID][i] =
faceToBreakTraction;
// this seems to slow convergence in some simple test cases...
// but surely it should be better update it
//cohesivePatchDU.traction()[i] = faceToBreakTraction;
if(cohesivePatchDUPtr)
{
cohesivePatchDUPtr->traction()[i] = faceToBreakTraction;
}
else
{
cohesivePatchDUFixedModePtr->traction()[i] = faceToBreakTraction;
cohesivePatchDUFixedModePtr->initiationTraction()[i] = faceToBreakTraction;
}
// this seems to slow convergence in some simple test cases...
// but surely it should be better update it
//cohesivePatchDU.traction()[i] = faceToBreakTraction;
if(cohesivePatchDUPtr)
{
cohesivePatchDUPtr->traction()[i] = faceToBreakTraction;
}
else
{
cohesivePatchDUFixedModePtr->traction()[i] = faceToBreakTraction;
cohesivePatchDUFixedModePtr->initiationTraction()[i] = faceToBreakTraction;
}
}
else
{
traction.boundaryField()[cohesivePatchID][i] =
-faceToBreakTraction;
traction.boundaryField()[cohesivePatchID][i] =
-faceToBreakTraction;
traction.oldTime().boundaryField()[cohesivePatchID][i] =
-faceToBreakTraction;
traction.oldTime().boundaryField()[cohesivePatchID][i] =
-faceToBreakTraction;
//cohesivePatchDU.traction()[i] = -faceToBreakTraction;
if(cohesivePatchDUPtr)
{
cohesivePatchDUPtr->traction()[i] = -faceToBreakTraction;
}
else
{
cohesivePatchDUFixedModePtr->traction()[i] = -faceToBreakTraction;
cohesivePatchDUFixedModePtr->initiationTraction()[i] = -faceToBreakTraction;
}
//cohesivePatchDU.traction()[i] = -faceToBreakTraction;
if(cohesivePatchDUPtr)
{
cohesivePatchDUPtr->traction()[i] = -faceToBreakTraction;
}
else
{
cohesivePatchDUFixedModePtr->traction()[i] =
-faceToBreakTraction;
cohesivePatchDUFixedModePtr->initiationTraction()[i] =
-faceToBreakTraction;
}
}
}
}
// hmmnn we only need a reference for very small groups of cells
// turn off for now
//# include "updateReference.H"
// hmmnn we only need a reference for very small groups of cells
// turn off for now
//# include "updateReference.H"
}
}

View file

@ -4,20 +4,21 @@
forAll(U.boundaryField(), patchI)
{
// philipc - this used to set a reference on
// processors which did not have a patch that fixesValue
// so processor in the centre of the domain all had
// a referece set causing stress peaks and resulting
// in an incorrect solution
// so a quick fix is to not set a reference on regions
// with a processor boundary
//if (U.boundaryField()[patchI].fixesValue())
if (
U.boundaryField()[patchI].fixesValue()
||
mesh.boundaryMesh()[patchI].type()
== processorPolyPatch::typeName
)
// philipc - this used to set a reference on
// processors which did not have a patch that fixesValue
// so processor in the centre of the domain all had
// a referece set causing stress peaks and resulting
// in an incorrect solution
// so a quick fix is to not set a reference on regions
// with a processor boundary
//if (U.boundaryField()[patchI].fixesValue())
if
(
U.boundaryField()[patchI].fixesValue()
||
mesh.boundaryMesh()[patchI].type()
== processorPolyPatch::typeName
)
{
const unallocLabelList& curFaceCells =
mesh.boundary()[patchI].faceCells();

View file

@ -85,87 +85,90 @@ if (runTime.outputTime() || topoChange)
// //- boundary traction
// volVectorField tractionBoundary
// (
// IOobject
// (
// "tractionBoundary",
// runTime.timeName(),
// mesh,
// IOobject::NO_READ,
// IOobject::AUTO_WRITE
// ),
// mesh,
// dimensionedVector("zero", dimForce/dimArea, vector::zero)
// );
// (
// IOobject
// (
// "tractionBoundary",
// runTime.timeName(),
// mesh,
// IOobject::NO_READ,
// IOobject::AUTO_WRITE
// ),
// mesh,
// dimensionedVector("zero", dimForce/dimArea, vector::zero)
// );
// surfaceVectorField n = mesh.Sf()/mesh.magSf();
// forAll(tractionBoundary.boundaryField(), patchi)
// {
// {
// if(mesh.boundaryMesh()[patchi].type() != processorPolyPatch::typeName)
// {
// {
// tractionBoundary.boundaryField()[patchi] =
// n.boundaryField()[patchi] & sigma.boundaryField()[patchi];
// }
// }
// n.boundaryField()[patchi] & sigma.boundaryField()[patchi];
// }
// }
//- cohesive damage and cracking, and GII and GII
volScalarField damageAndCracks
(
IOobject
(
"damageAndCracks",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0),
calculatedFvPatchVectorField::typeName
);
volScalarField GI
(
IOobject
(
"GI",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0),
calculatedFvPatchVectorField::typeName
);
volScalarField GII
(
IOobject
(
"GII",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0),
calculatedFvPatchVectorField::typeName
);
forAll(DU.boundaryField(), patchi)
{
// if(DU.boundaryField()[patchi].type() == cohesiveLawMultiMatFvPatchVectorField::typeName)
if(DU.boundaryField()[patchi].type() == solidCohesiveFvPatchVectorField::typeName)
{
// cohesiveLawMultiMatFvPatchVectorField& DUpatch =
// refCast<cohesiveLawMultiMatFvPatchVectorField>(DU.boundaryField()[patchi]);
solidCohesiveFvPatchVectorField& DUpatch =
refCast<solidCohesiveFvPatchVectorField>(DU.boundaryField()[patchi]);
(
IOobject
(
"damageAndCracks",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0),
calculatedFvPatchVectorField::typeName
);
GI.boundaryField()[patchi] = DUpatch.GI();
GII.boundaryField()[patchi] = DUpatch.GII();
damageAndCracks.boundaryField()[patchi] = DUpatch.crackingAndDamage();
}
}
volScalarField GI
(
IOobject
(
"GI",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0),
calculatedFvPatchVectorField::typeName
);
volScalarField GII
(
IOobject
(
"GII",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0),
calculatedFvPatchVectorField::typeName
);
forAll(DU.boundaryField(), patchi)
{
// if(DU.boundaryField()[patchi].type() == cohesiveLawMultiMatFvPatchVectorField::typeName)
if(DU.boundaryField()[patchi].type() == solidCohesiveFvPatchVectorField::typeName)
{
// cohesiveLawMultiMatFvPatchVectorField& DUpatch =
// refCast<cohesiveLawMultiMatFvPatchVectorField>(DU.boundaryField()[patchi]);
solidCohesiveFvPatchVectorField& DUpatch =
refCast<solidCohesiveFvPatchVectorField>(DU.boundaryField()[patchi]);
GI.boundaryField()[patchi] = DUpatch.GI();
GII.boundaryField()[patchi] = DUpatch.GII();
damageAndCracks.boundaryField()[patchi] = DUpatch.crackingAndDamage();
}
}
//Info << "done" << endl;

View file

@ -1,40 +1,41 @@
//- write force displacement to file
if(historyPatchID != -1)
{
{
Info << "Found patch "<<historyPatchName<<", writing y force and displacement to file"
<< endl;
<< endl;
//- calculate force in specified direction on topClamp patch
vector direction(0, 1, 0);
//- calculate force in specified direction on topClamp patch
vector direction(0, 1, 0);
//- for small strain or moving mesh
scalar force = gSum(
direction &
(mesh.boundary()[historyPatchID].Sf() & sigma.boundaryField()[historyPatchID])
);
//- for small strain or moving mesh
scalar force = gSum
(
direction &
(mesh.boundary()[historyPatchID].Sf() & sigma.boundaryField()[historyPatchID])
);
//- for large strain total lagrangian
// tensorField F = I + gradU.boundaryField()[historyPatchID];
// vectorField totalForce = mesh.Sf().boundaryField()[historyPatchID] & (sigma.boundaryField()[historyPatchID] & F);
//- for large strain total lagrangian
// tensorField F = I + gradU.boundaryField()[historyPatchID];
// vectorField totalForce = mesh.Sf().boundaryField()[historyPatchID] & (sigma.boundaryField()[historyPatchID] & F);
//vector force = sum( totalForce );
//vector force = sum( totalForce );
//scalar force = force[vector::Y];
//scalar force = force[vector::Y];
//- patchIntegrate utility integrates it this way but this is worng because the sigma tensor should
//- be dotted with the surface normal to give the actual traction/force
//- you cannot just take the component of the sigma tensor
//scalar forcePatchIntegrateMethod = gSum(
// mesh.magSf().boundaryField()[historyPatchID]
// *sigma.boundaryField()[historyPatchID].component(symmTensor::XY)
// );
//- patchIntegrate utility integrates it this way but this is worng because the sigma tensor should
//- be dotted with the surface normal to give the actual traction/force
//- you cannot just take the component of the sigma tensor
//scalar forcePatchIntegrateMethod = gSum(
// mesh.magSf().boundaryField()[historyPatchID]
// *sigma.boundaryField()[historyPatchID].component(symmTensor::XY)
// );
scalar disp = max(U.boundaryField()[historyPatchID].component(vector::Y));
scalar disp = max(U.boundaryField()[historyPatchID].component(vector::Y));
//- write to file
if(Pstream::master())
{
OFstream& forceDispFile = *filePtr;
forceDispFile << disp << "\t" << force << endl;
}
}
//- write to file
if(Pstream::master())
{
OFstream& forceDispFile = *filePtr;
forceDispFile << disp << "\t" << force << endl;
}
}

View file

@ -10,33 +10,34 @@ else if(divDSigmaExpMethod == "surface")
{
divDSigmaExp = fvc::div
(
muf*(mesh.Sf() & fvc::interpolate(gradDU.T()))
+ lambdaf*(mesh.Sf() & I*fvc::interpolate(tr(gradDU)))
- (muf + lambdaf)*(mesh.Sf() & fvc::interpolate(gradDU))
muf*(mesh.Sf() & fvc::interpolate(gradDU.T()))
+ lambdaf*(mesh.Sf() & I*fvc::interpolate(tr(gradDU)))
- (muf + lambdaf)*(mesh.Sf() & fvc::interpolate(gradDU))
);
}
else if(divDSigmaExpMethod == "decompose")
{
surfaceTensorField shearGradDU =
((I - n*n) & fvc::interpolate(gradDU));
surfaceTensorField shearGradDU = ((I - n*n) & fvc::interpolate(gradDU));
divDSigmaExp = fvc::div
(
mesh.magSf()*
(
- (muf + lambdaf)*(fvc::snGrad(DU) & (I - n*n))
+ lambdaf*tr(shearGradDU&(I - n*n))*n
+ muf*(shearGradDU&n)
)
);
divDSigmaExp = fvc::div
(
mesh.magSf()*
(
- (muf + lambdaf)*(fvc::snGrad(DU) & (I - n*n))
+ lambdaf*tr(shearGradDU&(I - n*n))*n
+ muf*(shearGradDU&n)
)
);
}
else if(divDSigmaExpMethod == "laplacian")
{
divDSigmaExp = - fvc::laplacian(mu + lambda, DU, "laplacian(DDU,DU)")
divDSigmaExp =
- fvc::laplacian(mu + lambda, DU, "laplacian(DDU,DU)")
+ fvc::div(mu*gradDU.T() + lambda*(I*tr(gradDU)), "div(sigma)");
}
else
{
FatalError << "divDSigmaExp method " << divDSigmaExpMethod
<< " not found!" << endl;
FatalErrorIn(args.executable())
<< "divDSigmaExp method " << divDSigmaExpMethod << " not found!"
<< abort(FatalError);
}

View file

@ -63,7 +63,7 @@ int main(int argc, char *argv[])
while(runTime.loop())
{
Info<< "Time: " << runTime.timeName() << nl << endl;
Info<< "Time = " << runTime.timeName() << nl << endl;
# include "readSolidMechanicsControls.H"

View file

@ -7,18 +7,20 @@ if(leftPatchID == -1)
}
//- calculate force in x direction on leftClamp patch
scalar leftForce = gSum(
vector(1, 0, 0) &
(mesh.boundary()[leftPatchID].Sf() & sigma.boundaryField()[leftPatchID])
);
scalar leftForce = gSum
(
vector(1, 0, 0) &
(mesh.boundary()[leftPatchID].Sf() & sigma.boundaryField()[leftPatchID])
);
//- patchIntegrate utility integrates it this way but this is worng because the sigma tensor should
//- be dotted with the surface normal to give the actual traction/force
//- you cannot just take the component of the sigma tensor
//scalar leftForcePatchIntegrateMethod = gSum(
// mesh.magSf().boundaryField()[leftPatchID]
// *sigma.boundaryField()[leftPatchID].component(symmTensor::XY)
// );
//scalar leftForcePatchIntegrateMethod = gSum
//(
// mesh.magSf().boundaryField()[leftPatchID]*
// sigma.boundaryField()[leftPatchID].component(symmTensor::XY)
//);
vector gaugeU1 = vector::zero;
vector gaugeU2 = vector::zero;

View file

@ -24,8 +24,8 @@
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedVector("zero", dimLength, vector::zero)
mesh,
dimensionedVector("zero", dimLength, vector::zero)
);
volTensorField gradU
@ -38,8 +38,8 @@
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedTensor("zero", dimless, tensor::zero)
mesh,
dimensionedTensor("zero", dimless, tensor::zero)
);
//- increment of Green finite strain tensor
@ -53,8 +53,8 @@
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedSymmTensor("zero", dimless, symmTensor::zero)
mesh,
dimensionedSymmTensor("zero", dimless, symmTensor::zero)
);
//- Green strain tensor
@ -68,8 +68,8 @@
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedSymmTensor("zero", dimless, symmTensor::zero)
mesh,
dimensionedSymmTensor("zero", dimless, symmTensor::zero)
);
@ -99,8 +99,8 @@
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedSymmTensor("zero", dimForce/dimArea, symmTensor::zero)
mesh,
dimensionedSymmTensor("zero", dimForce/dimArea, symmTensor::zero)
);
constitutiveModel rheology(sigma, DU);

View file

@ -43,105 +43,108 @@ Author
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
Info<< "\nStarting time loop\n" << endl;
while(runTime.loop())
while(runTime.loop())
{
Info<< "Time: " << runTime.timeName() << nl << endl;
Info<< "Time = " << runTime.timeName() << nl << endl;
# include "readSolidMechanicsControls.H"
# include "readSolidMechanicsControls.H"
int iCorr = 0;
scalar initialResidual = 0;
lduMatrix::solverPerformance solverPerf;
scalar relativeResidual = 1.0;
lduMatrix::debug=0;
int iCorr = 0;
scalar initialResidual = 0;
lduMatrix::solverPerformance solverPerf;
scalar relativeResidual = 1.0;
lduMatrix::debug=0;
do
do
{
DU.storePrevIter();
DU.storePrevIter();
fvVectorMatrix DUEqn
fvVectorMatrix DUEqn
(
fvm::d2dt2(rho, DU)
==
fvm::laplacian(2*mu + lambda, DU, "laplacian(DDU,DU)")
+ fvc::div(
-( (mu + lambda) * gradDU )
+ ( mu * (
gradDU.T()
+ (gradDU & gradU.T())
+ (gradU & gradDU.T())
+ (gradDU & gradDU.T())
) )
+ ( lambda * tr(DEpsilon) * I )
+ ( DSigma & gradU )
+ ( (sigma + DSigma) & gradDU ),
"div(sigma)"
)
);
fvm::d2dt2(rho, DU)
==
fvm::laplacian(2*mu + lambda, DU, "laplacian(DDU,DU)")
+ fvc::div
(
- ( (mu + lambda) * gradDU )
+ (
mu *
(
gradDU.T()
+ (gradDU & gradU.T())
+ (gradU & gradDU.T())
+ (gradDU & gradDU.T())
)
)
+ ( lambda * tr(DEpsilon) * I )
+ ( DSigma & gradU )
+ ( (sigma + DSigma) & gradDU ),
"div(sigma)"
)
);
solverPerf = DUEqn.solve();
solverPerf = DUEqn.solve();
if (iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
if (iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
}
DU.relax();
gradDU = fvc::grad(DU);
# include "calculateDEpsilonDSigma.H"
# include "calculateRelativeResidual.H"
Info<< "\tTime " << runTime.value()
<< ", Corrector " << iCorr
<< ", Solving for " << DU.name()
<< " using " << solverPerf.solverName()
<< ", residual = " << solverPerf.initialResidual()
<< ", relative residual = " << relativeResidual
<< ", inner iterations = " << solverPerf.nIterations() << endl;
}
while
(
solverPerf.initialResidual() > convergenceTolerance
//relativeResidual > convergenceTolerance
&& ++iCorr < nCorr
);
DU.relax();
Info<< nl << "Time " << runTime.value() << ", Solving for " << DU.name()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", Relative residual = " << relativeResidual
<< ", No outer iterations " << iCorr
<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< endl;
gradDU = fvc::grad(DU);
U += DU;
gradU += gradDU;
epsilon += DEpsilon;
sigma += DSigma;
# include "calculateDEpsilonDSigma.H"
# include "calculateRelativeResidual.H"
# include "writeFields.H"
Info << "\tTime " << runTime.value()
<< ", Corrector " << iCorr
<< ", Solving for " << DU.name()
<< " using " << solverPerf.solverName()
<< ", residual = " << solverPerf.initialResidual()
<< ", relative residual = " << relativeResidual
<< ", inner iterations = " << solverPerf.nIterations() << endl;
}
while
(
solverPerf.initialResidual() > convergenceTolerance
//relativeResidual > convergenceTolerance
&&
++iCorr < nCorr
);
Info << nl << "Time " << runTime.value() << ", Solving for " << DU.name()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", Relative residual = " << relativeResidual
<< ", No outer iterations " << iCorr
<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< endl;
U += DU;
gradU += gradDU;
epsilon += DEpsilon;
sigma += DSigma;
# include "writeFields.H"
Info<< "ExecutionTime = "
<< runTime.elapsedCpuTime()
<< " s\n\n" << endl;
Info<< "ExecutionTime = "
<< runTime.elapsedCpuTime()
<< " s\n\n" << endl;
}
Info<< "End\n" << endl;
Info<< "End\n" << endl;
return(0);
return(0);
}

View file

@ -1,36 +1,36 @@
if (runTime.outputTime())
{
{
volScalarField epsilonEq
(
IOobject
(
"epsilonEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((2.0/3.0)*magSqr(dev(epsilon)))
);
(
IOobject
(
"epsilonEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((2.0/3.0)*magSqr(dev(epsilon)))
);
Info<< "Max epsilonEq = " << max(epsilonEq).value()
<< endl;
<< endl;
volScalarField sigmaEq
(
IOobject
(
"sigmaEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((3.0/2.0)*magSqr(dev(sigma)))
);
(
IOobject
(
"sigmaEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((3.0/2.0)*magSqr(dev(sigma)))
);
Info<< "Max sigmaEq = " << max(sigmaEq).value()
<< endl;
<< endl;
//- Calculate Cauchy stress
volTensorField F = I + gradU;
@ -40,70 +40,70 @@ if (runTime.outputTime())
rho = rho/J;
volSymmTensorField sigmaCauchy
(
IOobject
(
"sigmaCauchy",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
(1/J) * symm(F.T() & sigma & F)
);
(
IOobject
(
"sigmaCauchy",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
(1/J) * symm(F.T() & sigma & F)
);
//- Cauchy von Mises stress
volScalarField sigmaCauchyEq
(
IOobject
(
"sigmaCauchyEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
(
IOobject
(
"sigmaCauchyEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((3.0/2.0)*magSqr(dev(sigmaCauchy)))
);
);
Info<< "Max sigmaCauchyEq = " << max(sigmaCauchyEq).value()
<< endl;
<< endl;
volTensorField Finv = inv(F);
volSymmTensorField epsilonAlmansi
(
IOobject
(
"epsilonAlmansi",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
(
IOobject
(
"epsilonAlmansi",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
symm(Finv & epsilon & Finv.T())
);
);
//- boundary traction
volVectorField traction
(
IOobject
(
"tractionCauchy",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedVector("zero", dimForce/dimArea, vector::zero)
);
(
IOobject
(
"tractionCauchy",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedVector("zero", dimForce/dimArea, vector::zero)
);
forAll(traction.boundaryField(), patchi)
{
tensorField Fpatch = I + gradU.boundaryField()[patchi];
{
tensorField Fpatch = I + gradU.boundaryField()[patchi];
traction.boundaryField()[patchi] =
n.boundaryField()[patchi] & (sigma.boundaryField()[patchi] & Fpatch);
}
traction.boundaryField()[patchi] =
n.boundaryField()[patchi] & (sigma.boundaryField()[patchi] & Fpatch);
}
runTime.write();
}
}

View file

@ -1,33 +1,33 @@
{
forAll(mesh.boundary(), patchID)
forAll(mesh.boundary(), patchID)
{
if(U.boundaryField()[patchID].type()
if(U.boundaryField()[patchID].type()
== solidDirectionMixedFvPatchVectorField::typeName
)
)
{
solidDirectionMixedFvPatchVectorField& loadingPatch =
refCast<solidDirectionMixedFvPatchVectorField>
(
U.boundaryField()[patchID]
);
solidDirectionMixedFvPatchVectorField& loadingPatch =
refCast<solidDirectionMixedFvPatchVectorField>
(
U.boundaryField()[patchID]
);
tensorField Finv = inv(I + gradU);
vectorField newN = Finv & n.boundaryField()[patchID];
newN /= mag(newN);
loadingPatch.valueFraction() = sqr(newN);
tensorField Finv = inv(I + gradU);
vectorField newN = Finv & n.boundaryField()[patchID];
newN /= mag(newN);
loadingPatch.valueFraction() = sqr(newN);
//- set gradient
loadingPatch.refGrad() =
(
//Traction
( (mu.boundaryField()[patchID] + lambda.boundaryField()[patchID]) * (n.boundaryField()[patchID] & gradU.boundaryField()[patchID]) )
- ( mu.boundaryField()[patchID] * (n.boundaryField()[patchID] & gradU.boundaryField()[patchID].T()) )
- ( mu.boundaryField()[patchID] * ( n.boundaryField()[patchID] & (gradU.boundaryField()[patchID] & gradU.boundaryField()[patchID].T()) ) )
- ( lambda.boundaryField()[patchID] * tr(gradU.boundaryField()[patchID]) * n.boundaryField()[patchID] )
- ( 0.5 * lambda.boundaryField()[patchID] * tr(gradU.boundaryField()[patchID] & gradU.boundaryField()[patchID].T()) * n.boundaryField()[patchID] )
)
/
(2.0*mu.boundaryField()[patchID] + lambda.boundaryField()[patchID]);
}
//- set gradient
loadingPatch.refGrad() =
(
//Traction
( (mu.boundaryField()[patchID] + lambda.boundaryField()[patchID]) * (n.boundaryField()[patchID] & gradU.boundaryField()[patchID]) )
- ( mu.boundaryField()[patchID] * (n.boundaryField()[patchID] & gradU.boundaryField()[patchID].T()) )
- ( mu.boundaryField()[patchID] * ( n.boundaryField()[patchID] & (gradU.boundaryField()[patchID] & gradU.boundaryField()[patchID].T()) ) )
- ( lambda.boundaryField()[patchID] * tr(gradU.boundaryField()[patchID]) * n.boundaryField()[patchID] )
- ( 0.5 * lambda.boundaryField()[patchID] * tr(gradU.boundaryField()[patchID] & gradU.boundaryField()[patchID].T()) * n.boundaryField()[patchID] )
)
/
(2.0*mu.boundaryField()[patchID] + lambda.boundaryField()[patchID]);
}
}
}

View file

@ -3,19 +3,19 @@ bool solidInterfaceCorr = rheology.solidInterfaceActive();
solidInterface* solidInterfacePtr(NULL);
if(solidInterfaceCorr)
{
{
solidInterfacePtr = &rheology.solInterface();
solidInterfacePtr->modifyProperties(muf, lambdaf);
//- solidInterface needs muf and lambdaf to be used for divDSigmaExp
// if(divDSigmaExpMethod != "surface" && divDSigmaExpMethod != "decompose")
// {
// {
// FatalError << "divDSigmaExp must be decompose or surface when solidInterface is on"
// << exit(FatalError);
// }
// << exit(FatalError);
// }
// if(divDSigmaLargeStrainExpMethod != "surface")
// {
// {
// FatalError << "divDSigmaLargeStrainExp must be surface when solidInterface is on"
// << exit(FatalError);
// }
}
// << exit(FatalError);
// }
}

View file

@ -56,105 +56,104 @@ int main(int argc, char *argv[])
while(runTime.loop())
{
Info<< "Time: " << runTime.timeName() << nl << endl;
Info<< "Time = " << runTime.timeName() << nl << endl;
# include "readSolidMechanicsControls.H"
int iCorr = 0;
scalar initialResidual = 0;
lduMatrix::solverPerformance solverPerf;
scalar relativeResidual = 1.0;
lduMatrix::debug = 0;
int iCorr = 0;
scalar initialResidual = 0;
lduMatrix::solverPerformance solverPerf;
scalar relativeResidual = 1.0;
lduMatrix::debug = 0;
do
{
U.storePrevIter();
do
{
U.storePrevIter();
surfaceTensorField shearGradU
(
"shearGradU",
(I - sqr(n)) & fvc::interpolate(gradU)
);
surfaceTensorField shearGradU
(
"shearGradU",
(I - sqr(n)) & fvc::interpolate(gradU)
);
fvVectorMatrix UEqn
(
fvm::d2dt2(rho, U)
==
fvm::laplacian(2*muf + lambdaf, U, "laplacian(DU,U)")
// + fvc::div
// (
// -(mu + lambda)*gradU
// + mu*gradU.T()
// + mu*(gradU & gradU.T())
// + lambda*tr(gradU)*I
// + 0.5*lambda*tr(gradU & gradU.T())*I
// + (sigma & gradU),
// "div(sigma)"
// )
+ fvc::div
(
mesh.magSf()*
(
fvVectorMatrix UEqn
(
fvm::d2dt2(rho, U)
==
fvm::laplacian(2*muf + lambdaf, U, "laplacian(DU,U)")
// + fvc::div
// (
// -(mu + lambda)*gradU
// + mu*gradU.T()
// + mu*(gradU & gradU.T())
// + lambda*tr(gradU)*I
// + 0.5*lambda*tr(gradU & gradU.T())*I
// + (sigma & gradU),
// "div(sigma)"
// )
+ fvc::div
(
mesh.magSf()*
(
- (muf + lambdaf)*(fvc::snGrad(U) & (I - n*n))
+ lambdaf*tr(shearGradU & (I - n*n))*n
+ muf*(shearGradU & n)
+ muf*(n & fvc::interpolate(gradU & gradU.T()))
+ 0.5*lambdaf*(n*tr(fvc::interpolate(gradU & gradU.T())))
+ (n & fvc::interpolate(sigma & gradU))
)
)
);
)
)
);
if (solidInterfaceCorr)
{
solidInterfacePtr->correct(UEqn);
}
if (solidInterfaceCorr)
{
solidInterfacePtr->correct(UEqn);
}
solverPerf = UEqn.solve();
solverPerf = UEqn.solve();
if (iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
}
if (iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
}
U.relax();
U.relax();
//gradU = solidInterfacePtr->grad(U);
gradU = fvc::grad(U);
//gradU = solidInterfacePtr->grad(U);
gradU = fvc::grad(U);
# include "calculateEpsilonSigma.H"
# include "calculateRelativeResidual.H"
# include "calculateEpsilonSigma.H"
# include "calculateRelativeResidual.H"
Info<< "\tTime " << runTime.value()
<< ", Corrector " << iCorr
<< ", Solving for " << U.name()
<< " using " << solverPerf.solverName()
<< ", residual = " << solverPerf.initialResidual()
<< ", relative residual = " << relativeResidual
<< ", inner iterations " << solverPerf.nIterations() << endl;
}
while
(
solverPerf.initialResidual() > convergenceTolerance
//relativeResidual > convergenceTolerance
&&
++iCorr < nCorr
);
Info<< "\tTime " << runTime.value()
<< ", Corrector " << iCorr
<< ", Solving for " << U.name()
<< " using " << solverPerf.solverName()
<< ", residual = " << solverPerf.initialResidual()
<< ", relative residual = " << relativeResidual
<< ", inner iterations " << solverPerf.nIterations() << endl;
}
while
(
solverPerf.initialResidual() > convergenceTolerance
//relativeResidual > convergenceTolerance
&& ++iCorr < nCorr
);
Info<< nl << "Time " << runTime.value() << ", Solving for " << U.name()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", Relative residual = " << relativeResidual
<< ", No outer iterations " << iCorr
<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< endl;
Info<< nl << "Time " << runTime.value() << ", Solving for " << U.name()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", Relative residual = " << relativeResidual
<< ", No outer iterations " << iCorr
<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< endl;
# include "writeFields.H"
# include "writeFields.H"
Info<< "ExecutionTime = "
<< runTime.elapsedCpuTime()
<< " s\n\n" << endl;
Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< endl;
}
Info<< "End\n" << endl;

View file

@ -2,7 +2,7 @@
//- move mesh
//--------------------------------------------------//
if(min(J.internalField()) > 0)
{
{
Info << "Moving mesh using least squares interpolation" << endl;
leastSquaresVolPointInterpolation pointInterpolation(mesh);
@ -11,46 +11,45 @@ if(min(J.internalField()) > 0)
pointMesh pMesh(mesh);
wordList types
(
pMesh.boundary().size(),
calculatedFvPatchVectorField::typeName
);
(
pMesh.boundary().size(),
calculatedFvPatchVectorField::typeName
);
pointVectorField pointU
(
IOobject
(
"pointU",
runTime.timeName(),
mesh
(
IOobject
(
"pointU",
runTime.timeName(),
mesh
),
pMesh,
dimensionedVector("zero", dimLength, vector::zero),
types
);
pMesh,
dimensionedVector("zero", dimLength, vector::zero),
types
);
pointInterpolation.interpolate(U, pointU);
const vectorField& pointUI =
pointU.internalField();
const vectorField& pointUI = pointU.internalField();
//- Move mesh
vectorField newPoints = mesh.allPoints();
forAll (pointUI, pointI)
{
{
newPoints[pointI] += pointUI[pointI];
}
}
twoDPointCorrector twoDCorrector(mesh);
twoDCorrector.correctPoints(newPoints);
mesh.movePoints(newPoints);
mesh.V00();
mesh.moving(false);
}
else
{
FatalErrorIn(args.executable())
<< "Negative Jacobian"
<< exit(FatalError);
}
}
else
{
FatalErrorIn(args.executable())
<< "Negative Jacobian"
<< exit(FatalError);
}

View file

@ -1,36 +1,36 @@
if (runTime.outputTime())
{
{
volScalarField epsilonEq
(
IOobject
(
"epsilonEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((2.0/3.0)*magSqr(dev(epsilon)))
);
(
IOobject
(
"epsilonEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((2.0/3.0)*magSqr(dev(epsilon)))
);
Info<< "Max epsilonEq = " << max(epsilonEq).value()
<< endl;
<< endl;
volScalarField sigmaEq
(
IOobject
(
"sigmaEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((3.0/2.0)*magSqr(dev(sigma)))
);
(
IOobject
(
"sigmaEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((3.0/2.0)*magSqr(dev(sigma)))
);
Info<< "Max sigmaEq = " << max(sigmaEq).value()
<< endl;
<< endl;
//- Calculate Cauchy stress
volTensorField F = I + gradU;
@ -40,49 +40,49 @@ if (runTime.outputTime())
rho = rho/J;
volSymmTensorField sigmaCauchy
(
IOobject
(
"sigmaCauchy",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
(1/J) * symm(F.T() & sigma & F)
);
(
IOobject
(
"sigmaCauchy",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
(1/J) * symm(F.T() & sigma & F)
);
//- Cauchy von Mises stress
volScalarField sigmaCauchyEq
(
IOobject
(
"sigmaCauchyEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((3.0/2.0)*magSqr(dev(sigmaCauchy)))
);
(
IOobject
(
"sigmaCauchyEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((3.0/2.0)*magSqr(dev(sigmaCauchy)))
);
Info<< "Max sigmaCauchyEq = " << max(sigmaCauchyEq).value()
<< endl;
<< endl;
volTensorField Finv = inv(F);
volSymmTensorField epsilonAlmansi
(
IOobject
(
"epsilonAlmansi",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
symm(Finv & epsilon & Finv.T())
);
(
IOobject
(
"epsilonAlmansi",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
symm(Finv & epsilon & Finv.T())
);
// volVectorField traction
// (
@ -163,4 +163,4 @@ if (runTime.outputTime())
// }
runTime.write();
}
}

View file

@ -1,47 +1,43 @@
if(divDSigmaExpMethod == "standard")
{
{
divDSigmaExp = fvc::div
(
mu*gradDU.T() + lambda*(I*tr(gradDU)) - (mu + lambda)*gradDU,
"div(sigma)"
);
}
else if(divDSigmaExpMethod == "surface")
{
divDSigmaExp = fvc::div
(
muf*(mesh.Sf() & fvc::interpolate(gradDU.T()))
+ lambdaf*(mesh.Sf() & I*fvc::interpolate(tr(gradDU)))
- (muf + lambdaf)*(mesh.Sf() & fvc::interpolate(gradDU))
(
mu*gradDU.T() + lambda*(I*tr(gradDU)) - (mu + lambda)*gradDU,
"div(sigma)"
);
}
else if(divDSigmaExpMethod == "decompose")
{
surfaceTensorField shearGradDU =
((I - n*n)&fvc::interpolate(gradDU));
}
else if(divDSigmaExpMethod == "surface")
{
divDSigmaExp = fvc::div
(
muf*(mesh.Sf() & fvc::interpolate(gradDU.T()))
+ lambdaf*(mesh.Sf() & I*fvc::interpolate(tr(gradDU)))
- (muf + lambdaf)*(mesh.Sf() & fvc::interpolate(gradDU))
);
}
else if(divDSigmaExpMethod == "decompose")
{
surfaceTensorField shearGradDU = ((I - n*n) & fvc::interpolate(gradDU));
divDSigmaExp = fvc::div
(
mesh.magSf()
*(
- (muf + lambdaf)*(fvc::snGrad(DU)&(I - n*n))
+ lambdaf*tr(shearGradDU&(I - n*n))*n
+ muf*(shearGradDU&n)
)
divDSigmaExp = fvc::div
(
mesh.magSf()*
(
- (muf + lambdaf)*(fvc::snGrad(DU) & (I - n*n))
+ lambdaf*tr(shearGradDU & (I - n*n))*n
+ muf*(shearGradDU & n)
)
);
}
else if(divDSigmaExpMethod == "laplacian")
{
divDSigmaExp =
- fvc::laplacian(mu + lambda, DU, "laplacian(DDU,DU)")
+ fvc::div
(
mu*gradDU.T()
+ lambda*(I*tr(gradDU)),
"div(sigma)"
);
}
else
{
FatalError << "divDSigmaExp method " << divDSigmaExpMethod << " not found!" << endl;
}
}
else if(divDSigmaExpMethod == "laplacian")
{
divDSigmaExp =
- fvc::laplacian(mu + lambda, DU, "laplacian(DDU,DU)")
+ fvc::div(mu*gradDU.T() + lambda*(I*tr(gradDU)), "div(sigma)");
}
else
{
FatalErrorIn(args.executable())
<< "divDSigmaExp method " << divDSigmaExpMethod << " not found!"
<< abort(FatalError);
}

View file

@ -2,30 +2,28 @@
//- sigma explicit non linear explicit terms
//----------------------------------------------------//
if(divDSigmaLargeStrainExpMethod == "standard")
{
divDSigmaLargeStrainExp =
fvc::div
(
mu*(gradDU & gradDU.T())
//+ 0.5*lambda*(gradDU && gradDU)*I //- equivalent to 0.5*lambda*(I*tr(gradDU & gradDU.T()))
+ 0.5*lambda*tr(gradDU & gradDU.T())*I
+ ((sigma + DSigma) & gradDU),
"div(sigma)"
);
}
else if(divDSigmaLargeStrainExpMethod == "surface")
{
divDSigmaLargeStrainExp =
fvc::div
(
muf * (mesh.Sf() & fvc::interpolate(gradDU & gradDU.T()))
+ 0.5*lambdaf * (mesh.Sf() & (fvc::interpolate(gradDU && gradDU)*I))
+ (mesh.Sf() & fvc::interpolate( (sigma + DSigma) & gradDU ))
{
divDSigmaLargeStrainExp = fvc::div
(
mu*(gradDU & gradDU.T())
//+ 0.5*lambda*(gradDU && gradDU)*I //- equivalent to 0.5*lambda*(I*tr(gradDU & gradDU.T()))
+ 0.5*lambda*tr(gradDU & gradDU.T())*I
+ ((sigma + DSigma) & gradDU),
"div(sigma)"
);
}
else
{
FatalError
<< "divDSigmaLargeStrainMethod not found!"
<< exit(FatalError);
}
}
else if(divDSigmaLargeStrainExpMethod == "surface")
{
divDSigmaLargeStrainExp = fvc::div
(
muf * (mesh.Sf() & fvc::interpolate(gradDU & gradDU.T()))
+ 0.5*lambdaf * (mesh.Sf() & (fvc::interpolate(gradDU && gradDU)*I))
+ (mesh.Sf() & fvc::interpolate( (sigma + DSigma) & gradDU ))
);
}
else
{
FatalError
<< "divDSigmaLargeStrainMethod not found!"
<< exit(FatalError);
}

View file

@ -15,59 +15,57 @@
FieldField<Field, vector> extraVecs(ptc.size());
{
const labelListList& pfaces = mesh.pointFaces();
const labelListList& pfaces = mesh.pointFaces();
const volVectorField& centres = mesh.C();
const volVectorField& centres = mesh.C();
const fvBoundaryMesh& bm = mesh.boundary();
const fvBoundaryMesh& bm = mesh.boundary();
forAll (ptc, pointI)
forAll (ptc, pointI)
{
const label curPoint = ptc[pointI];
const label curPoint = ptc[pointI];
const labelList& curFaces = pfaces[curPoint];
const labelList& curFaces = pfaces[curPoint];
// extraVecs.hook(new vectorField(curFaces.size())); //- no hook function
extraVecs.set
(
pointI,
new vectorField(curFaces.size())
);
vectorField& curExtraVectors = extraVecs[pointI];
label nFacesAroundPoint = 0;
const vector& pointLoc = mesh.points()[curPoint];
// Go through all the faces
forAll (curFaces, faceI)
{
if (!mesh.isInternalFace(curFaces[faceI]))
{
// This is a boundary face. If not in the empty patch
// or coupled calculate the extrapolation vector
label patchID =
mesh.boundaryMesh().whichPatch(curFaces[faceI]);
if
// extraVecs.hook(new vectorField(curFaces.size())); //- no hook function
extraVecs.set
(
!isA<emptyFvPatch>(bm[patchID])
&& !bm[patchID].coupled()
)
pointI,
new vectorField(curFaces.size())
);
vectorField& curExtraVectors = extraVecs[pointI];
label nFacesAroundPoint = 0;
const vector& pointLoc = mesh.points()[curPoint];
// Go through all the faces
forAll (curFaces, faceI)
{
// Found a face for extrapolation
curExtraVectors[nFacesAroundPoint] =
pointLoc
- centres.boundaryField()[patchID]
[bm[patchID].patch().whichFace(curFaces[faceI])];
if (!mesh.isInternalFace(curFaces[faceI]))
{
// This is a boundary face. If not in the empty patch
// or coupled calculate the extrapolation vector
label patchID =
mesh.boundaryMesh().whichPatch(curFaces[faceI]);
nFacesAroundPoint++;
if
(
!isA<emptyFvPatch>(bm[patchID]) && !bm[patchID].coupled()
)
{
// Found a face for extrapolation
curExtraVectors[nFacesAroundPoint] =
pointLoc
- centres.boundaryField()[patchID]
[bm[patchID].patch().whichFace(curFaces[faceI])];
nFacesAroundPoint++;
}
}
}
}
}
curExtraVectors.setSize(nFacesAroundPoint);
curExtraVectors.setSize(nFacesAroundPoint);
}
}

View file

@ -8,114 +8,114 @@
FieldField<Field, scalar> w(ptc.size());
{
const labelListList& pf = mesh.pointFaces();
const labelListList& pf = mesh.pointFaces();
const volVectorField& centres = mesh.C();
const volVectorField& centres = mesh.C();
const fvBoundaryMesh& bm = mesh.boundary();
const fvBoundaryMesh& bm = mesh.boundary();
pointScalarField volPointSumWeights
pointScalarField volPointSumWeights
(
IOobject
(
"volPointSumWeights",
mesh.polyMesh::instance(),
mesh
),
pMesh,
dimensionedScalar("zero", dimless, 0)
);
forAll (ptc, pointI)
{
const label curPoint = ptc[pointI];
const labelList& curFaces = pf[curPoint];
//w.hook(new scalarField(curFaces.size())); //philipc no hook function
w.set
(
pointI,
new scalarField(curFaces.size())
);
scalarField& curWeights = w[pointI];
label nFacesAroundPoint = 0;
const vector& pointLoc = mesh.points()[curPoint];
// Go through all the faces
forAll (curFaces, faceI)
{
if (!mesh.isInternalFace(curFaces[faceI]))
{
// This is a boundary face. If not in the empty patch
// or coupled calculate the extrapolation vector
label patchID =
mesh.boundaryMesh().whichPatch(curFaces[faceI]);
if
IOobject
(
!isA<emptyFvPatch>(bm[patchID])
&& !(
bm[patchID].coupled()
//&& Pstream::parRun()
//&& !mesh.parallelData().cyclicParallel()
)
)
{
curWeights[nFacesAroundPoint] =
1.0/mag
(
pointLoc
- centres.boundaryField()[patchID]
[
bm[patchID].patch().whichFace(curFaces[faceI])
]
);
nFacesAroundPoint++;
}
}
}
// Reset the sizes of the local weights
curWeights.setSize(nFacesAroundPoint);
// Collect the sum of weights for parallel correction
volPointSumWeights[curPoint] += sum(curWeights);
}
// Do parallel correction of weights
// Update coupled boundaries
// Work-around for cyclic parallels.
/*if (Pstream::parRun() && !mesh.parallelData().cyclicParallel())
{
forAll (volPointSumWeights.boundaryField(), patchI)
{
if (volPointSumWeights.boundaryField()[patchI].coupled())
{
volPointSumWeights.boundaryField()[patchI].initAddField();
}
}
forAll (volPointSumWeights.boundaryField(), patchI)
{
if (volPointSumWeights.boundaryField()[patchI].coupled())
{
volPointSumWeights.boundaryField()[patchI].addField
(
volPointSumWeights.internalField()
"volPointSumWeights",
mesh.polyMesh::instance(),
mesh
),
pMesh,
dimensionedScalar("zero", dimless, 0)
);
forAll (ptc, pointI)
{
const label curPoint = ptc[pointI];
const labelList& curFaces = pf[curPoint];
//w.hook(new scalarField(curFaces.size())); //philipc no hook function
w.set
(
pointI,
new scalarField(curFaces.size())
);
scalarField& curWeights = w[pointI];
label nFacesAroundPoint = 0;
const vector& pointLoc = mesh.points()[curPoint];
// Go through all the faces
forAll (curFaces, faceI)
{
if (!mesh.isInternalFace(curFaces[faceI]))
{
// This is a boundary face. If not in the empty patch
// or coupled calculate the extrapolation vector
label patchID =
mesh.boundaryMesh().whichPatch(curFaces[faceI]);
if
(
!isA<emptyFvPatch>(bm[patchID])
&& !(
bm[patchID].coupled()
//&& Pstream::parRun()
//&& !mesh.parallelData().cyclicParallel()
)
)
{
curWeights[nFacesAroundPoint] =
1.0/mag
(
pointLoc
- centres.boundaryField()[patchID]
[
bm[patchID].patch().whichFace(curFaces[faceI])
]
);
nFacesAroundPoint++;
}
}
}
// Reset the sizes of the local weights
curWeights.setSize(nFacesAroundPoint);
// Collect the sum of weights for parallel correction
volPointSumWeights[curPoint] += sum(curWeights);
}
}
// Do parallel correction of weights
// Update coupled boundaries
// Work-around for cyclic parallels.
/*if (Pstream::parRun() && !mesh.parallelData().cyclicParallel())
{
forAll (volPointSumWeights.boundaryField(), patchI)
{
if (volPointSumWeights.boundaryField()[patchI].coupled())
{
volPointSumWeights.boundaryField()[patchI].initAddField();
}
}
forAll (volPointSumWeights.boundaryField(), patchI)
{
if (volPointSumWeights.boundaryField()[patchI].coupled())
{
volPointSumWeights.boundaryField()[patchI].addField
(
volPointSumWeights.internalField()
);
}
}
}*/
// Re-scale the weights for the current point
forAll (ptc, pointI)
// Re-scale the weights for the current point
forAll (ptc, pointI)
{
w[pointI] /= volPointSumWeights[ptc[pointI]];
w[pointI] /= volPointSumWeights[ptc[pointI]];
}
}

View file

@ -92,31 +92,31 @@
//- explicit terms in the momentum equation
volVectorField divDSigmaExp
(
IOobject
(
"divDSigmaExp",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimensionSet(1, -2, -2, 0, 0, 0, 0), vector::zero)
);
IOobject
(
"divDSigmaExp",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimensionSet(1, -2, -2, 0, 0, 0, 0), vector::zero)
);
volVectorField divDSigmaLargeStrainExp
volVectorField divDSigmaLargeStrainExp
(
IOobject
(
"divDSigmaLargeStrainExp",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimensionSet(1, -2, -2, 0, 0, 0, 0), vector::zero)
);
IOobject
(
"divDSigmaLargeStrainExp",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimensionSet(1, -2, -2, 0, 0, 0, 0), vector::zero)
);
constitutiveModel rheology(sigma, DU);

View file

@ -4,26 +4,26 @@ solidInterface* solidInterfacePtr(NULL);
{
const dictionary& stressControl =
mesh.solutionDict().subDict("solidMechanics");
mesh.solutionDict().subDict("solidMechanics");
solidInterfaceCorr = Switch(stressControl.lookup("solidInterface"));
if(solidInterfaceCorr)
{
Info << "Creating solid interface correction" << endl;
solidInterfacePtr = new solidInterface(mesh, rheology);
solidInterfacePtr->modifyProperties(muf, lambdaf);
{
Info << "Creating solid interface correction" << endl;
solidInterfacePtr = new solidInterface(mesh, rheology);
solidInterfacePtr->modifyProperties(muf, lambdaf);
//- solidInterface needs muf and lambdaf to be used for divDSigmaExp
if(divDSigmaExpMethod != "surface" && divDSigmaExpMethod != "decompose")
{
FatalError << "divDSigmaExp must be decompose or surface when solidInterface is on"
<< exit(FatalError);
}
if(divDSigmaLargeStrainExpMethod == "surface")
{
FatalError << "divDSigmaLargeStrainExp must be surface when solidInterface is on"
<< exit(FatalError);
}
}
//- solidInterface needs muf and lambdaf to be used for divDSigmaExp
if(divDSigmaExpMethod != "surface" && divDSigmaExpMethod != "decompose")
{
FatalError << "divDSigmaExp must be decompose or surface when solidInterface is on"
<< exit(FatalError);
}
if(divDSigmaLargeStrainExpMethod == "surface")
{
FatalError << "divDSigmaLargeStrainExp must be surface when solidInterface is on"
<< exit(FatalError);
}
}
}

View file

@ -3,20 +3,19 @@ bool solidInterfaceCorr = rheology.solidInterfaceActive();
solidInterface* solidInterfacePtr(NULL);
if(solidInterfaceCorr)
{
{
solidInterfacePtr = &rheology.solInterface();
solidInterfacePtr->modifyProperties(muf, lambdaf);
//- solidInterface needs muf and lambdaf to be used for divDSigmaExp
if(divDSigmaExpMethod != "surface" && divDSigmaExpMethod != "decompose")
{
{
FatalError << "divDSigmaExp must be decompose or surface when solidInterface is on"
<< exit(FatalError);
}
<< exit(FatalError);
}
if(divDSigmaLargeStrainExpMethod != "surface")
{
FatalError << "divDSigmaLargeStrainExp must be surface when solidInterface is on"
<< exit(FatalError);
}
}
{
FatalError << "divDSigmaLargeStrainExp must be surface when solidInterface is on"
<< exit(FatalError);
}
}

View file

@ -52,100 +52,101 @@ Author
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
# include "readDivDSigmaExpMethod.H"
# include "readDivDSigmaLargeStrainExpMethod.H"
# include "readMoveMeshMethod.H"
# include "createSolidInterfaceNonLin.H"
# include "findGlobalFaceZones.H"
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
# include "readDivDSigmaExpMethod.H"
# include "readDivDSigmaLargeStrainExpMethod.H"
# include "readMoveMeshMethod.H"
# include "createSolidInterfaceNonLin.H"
# include "findGlobalFaceZones.H"
//* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info << "\nStarting time loop\n" << endl;
Info<< "\nStarting time loop\n" << endl;
for (runTime++; !runTime.end(); runTime++)
while(runTime.loop())
{
Info<< "Time = " << runTime.timeName() << nl << endl;
Info<< "Time = " << runTime.timeName() << nl << endl;
# include "readSolidMechanicsControls.H"
# include "readSolidMechanicsControls.H"
int iCorr = 0;
lduMatrix::solverPerformance solverPerf;
scalar initialResidual = 1.0;
scalar relativeResidual = 1.0;
lduMatrix::debug = 0;
int iCorr = 0;
lduMatrix::solverPerformance solverPerf;
scalar initialResidual = 1.0;
scalar relativeResidual = 1.0;
lduMatrix::debug = 0;
do
{
DU.storePrevIter();
do
{
DU.storePrevIter();
# include "calculateDivDSigmaExp.H"
# include "calculateDivDSigmaLargeStrainExp.H"
# include "calculateDivDSigmaExp.H"
# include "calculateDivDSigmaLargeStrainExp.H"
//- Updated lagrangian momentum equation
fvVectorMatrix DUEqn
(
fvm::d2dt2(rho,DU)
==
fvm::laplacian(2*muf + lambdaf, DU, "laplacian(DDU,DU)")
+ divDSigmaExp
+ divDSigmaLargeStrainExp
);
//- Updated lagrangian momentum equation
fvVectorMatrix DUEqn
(
fvm::d2dt2(rho,DU)
==
fvm::laplacian(2*muf + lambdaf, DU, "laplacian(DDU,DU)")
+ divDSigmaExp
+ divDSigmaLargeStrainExp
);
if (solidInterfaceCorr)
{
solidInterfacePtr->correct(DUEqn);
}
if (solidInterfaceCorr)
{
solidInterfacePtr->correct(DUEqn);
}
solverPerf = DUEqn.solve();
solverPerf = DUEqn.solve();
if (iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
}
if (iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
}
DU.relax();
DU.relax();
gradDU = fvc::grad(DU);
gradDU = fvc::grad(DU);
# include "calculateDEpsilonDSigma.H"
# include "calculateRelativeResidual.H"
# include "calculateDEpsilonDSigma.H"
# include "calculateRelativeResidual.H"
Info << "\tTime " << runTime.value()
<< ", Corrector " << iCorr
<< ", Solving for " << DU.name()
<< " using " << solverPerf.solverName()
<< ", res = " << solverPerf.initialResidual()
<< ", rel res = " << relativeResidual
<< ", inner iters " << solverPerf.nIterations() << endl;
}
while
Info<< "\tTime " << runTime.value()
<< ", Corrector " << iCorr
<< ", Solving for " << DU.name()
<< " using " << solverPerf.solverName()
<< ", res = " << solverPerf.initialResidual()
<< ", rel res = " << relativeResidual
<< ", inner iters " << solverPerf.nIterations() << endl;
}
while
(
//solverPerf.initialResidual() > convergenceTolerance
relativeResidual > convergenceTolerance
&& ++iCorr < nCorr
);
&& ++iCorr < nCorr
);
Info << nl << "Time " << runTime.value() << ", Solving for " << DU.name()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", No outer iterations " << iCorr << endl;
# include "moveMesh.H"
# include "rotateFields.H"
# include "writeFields.H"
# include "moveMesh.H"
# include "rotateFields.H"
# include "writeFields.H"
Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< endl;
Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< endl;
}
Info<< "End\n" << endl;
Info<< "End\n" << endl;
return(0);
return(0);
}
// ************************************************************************* //

View file

@ -8,26 +8,26 @@ const fvBoundaryMesh& bm = mesh.boundary();
forAll (bm, patchI)
{
// If the patch is empty, skip it
// If the patch is coupled, and there are no cyclic parallels, skip it
if
// If the patch is empty, skip it
// If the patch is coupled, and there are no cyclic parallels, skip it
if
(
!isA<emptyFvPatch>(bm[patchI])
&& !(
bm[patchI].coupled()
//&& Pstream::parRun()
//&& !mesh.parallelData().cyclicParallel()
)
)
!isA<emptyFvPatch>(bm[patchI])
&& !(
bm[patchI].coupled()
//&& Pstream::parRun()
//&& !mesh.parallelData().cyclicParallel()
)
)
{
const labelList& bp = bm[patchI].patch().boundaryPoints();
const labelList& bp = bm[patchI].patch().boundaryPoints();
const labelList& meshPoints = bm[patchI].patch().meshPoints();
const labelList& meshPoints = bm[patchI].patch().meshPoints();
forAll (bp, pointI)
{
pointsCorrectionMap.insert(meshPoints[bp[pointI]]);
}
forAll (bp, pointI)
{
pointsCorrectionMap.insert(meshPoints[bp[pointI]]);
}
}
}

View file

@ -2,7 +2,7 @@
//- move mesh
//--------------------------------------------------//
// if(min(J.internalField()) > 0)
{
{
Info << "Move solid mesh using inverse distance interpolation" << endl;
// Create point mesh
@ -12,23 +12,23 @@
volPointInterpolation pointInterpolation(mesh);
wordList types
(
(
pMesh.boundary().size(),
calculatedFvPatchVectorField::typeName
);
);
pointVectorField pointDU
(
(
IOobject
(
"pointDU",
runTime.timeName(),
mesh
),
"pointDU",
runTime.timeName(),
mesh
),
pMesh,
dimensionedVector("zero", dimLength, vector::zero),
types
);
);
// Calculate mesh points displacement
pointInterpolation.interpolate(DU, pointDU);
@ -36,27 +36,27 @@
//- correct edge interpolation
//- this is the stuff from edgeCorrectedVolPointInterpolation but
//- that class no longer works
# include "performEdgeCorrectedVolPointInterpolation.H"
# include "performEdgeCorrectedVolPointInterpolation.H"
const vectorField& pointDUI =
pointDU.internalField();
pointDU.internalField();
//- see the effect of correctBCs
// Move mesh
vectorField newPoints = mesh.allPoints();
forAll (pointDUI, pointI)
{
newPoints[pointI] += pointDUI[pointI];
}
forAll (pointDUI, pointI)
{
newPoints[pointI] += pointDUI[pointI];
}
twoDPointCorrector twoDCorrector(mesh);
twoDCorrector.correctPoints(newPoints);
mesh.movePoints(newPoints);
mesh.V00();
mesh.moving(false);
}
}
// else
// {
// FatalErrorIn(args.executable())

View file

@ -2,7 +2,7 @@
//- move mesh
//--------------------------------------------------//
{
//Info << "Moving mesh using least squares interpolation" << endl;
//Info << "Moving mesh using least squares interpolation" << endl;
leastSquaresVolPointInterpolation pointInterpolation(mesh);
@ -112,4 +112,4 @@
// Update n
n = mesh.Sf()/mesh.magSf();
}
}

View file

@ -7,38 +7,40 @@ pointVectorField& pf = pointDU;
// Do the correction
//GeometricField<Type, pointPatchField, pointMesh> pfCorr
/*pointVectorField pfCorr
/*
pointVectorField pfCorr
(
IOobject
(
// "edgeCorrectedVolPointInterpolate(" + vf.name() + ")Corr",
"edgeCorrectedVolPointInterpolate(" + DU.name() + ")Corr",
//vf.instance(),
DU,
pMesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
pMesh,
//dimensioned<Type>("zero", pf.dimensions(), pTraits<Type>::zero),
dimensionedVector("zero", pf.dimensions(), vector::zero),
pf.boundaryField().types()
);*/
IOobject
(
// "edgeCorrectedVolPointInterpolate(" + vf.name() + ")Corr",
"edgeCorrectedVolPointInterpolate(" + DU.name() + ")Corr",
//vf.instance(),
DU,
pMesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
pMesh,
//dimensioned<Type>("zero", pf.dimensions(), pTraits<Type>::zero),
dimensionedVector("zero", pf.dimensions(), vector::zero),
pf.boundaryField().types()
);
*/
pointVectorField pfCorr
(
IOobject
(
"pointDUcorr",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
pMesh,
dimensionedVector("vector", dimLength, vector::zero),
"calculated"
);
IOobject
(
"pointDUcorr",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
pMesh,
dimensionedVector("vector", dimLength, vector::zero),
"calculated"
);
//const labelList& ptc = boundaryPoints();
#include "findBoundaryPoints.H"
@ -57,64 +59,68 @@ const labelListList& PointFaces = mesh.pointFaces();
forAll (ptc, pointI)
{
const label curPoint = ptc[pointI];
const label curPoint = ptc[pointI];
const labelList& curFaces = PointFaces[curPoint];
const labelList& curFaces = PointFaces[curPoint];
label fI = 0;
label fI = 0;
// Go through all the faces
forAll (curFaces, faceI)
// Go through all the faces
forAll (curFaces, faceI)
{
if (!mesh.isInternalFace(curFaces[faceI]))
{
// This is a boundary face. If not in the empty patch
// or coupled calculate the extrapolation vector
label patchID =
mesh.boundaryMesh().whichPatch(curFaces[faceI]);
if
(
!isA<emptyFvPatch>(mesh.boundary()[patchID])
&& !mesh.boundary()[patchID].coupled()
)
if (!mesh.isInternalFace(curFaces[faceI]))
{
label faceInPatchID =
bm[patchID].patch().whichFace(curFaces[faceI]);
// This is a boundary face. If not in the empty patch
// or coupled calculate the extrapolation vector
label patchID =
mesh.boundaryMesh().whichPatch(curFaces[faceI]);
pfCorr[curPoint] +=
w[pointI][fI]*
(
extraVecs[pointI][fI]
& gradDU.boundaryField()[patchID][faceInPatchID]
);
if
(
!isA<emptyFvPatch>(mesh.boundary()[patchID])
&& !mesh.boundary()[patchID].coupled()
)
{
label faceInPatchID =
bm[patchID].patch().whichFace(curFaces[faceI]);
fI++;
pfCorr[curPoint] +=
w[pointI][fI]*
(
extraVecs[pointI][fI]
& gradDU.boundaryField()[patchID][faceInPatchID]
);
fI++;
}
}
}
}
}
// Update coupled boundaries
/*forAll (pfCorr.boundaryField(), patchI)
/*
forAll (pfCorr.boundaryField(), patchI)
{
if (pfCorr.boundaryField()[patchI].coupled())
if (pfCorr.boundaryField()[patchI].coupled())
{
pfCorr.boundaryField()[patchI].initAddField();
pfCorr.boundaryField()[patchI].initAddField();
}
}*/
}
*/
/*forAll (pfCorr.boundaryField(), patchI)
/*
forAll (pfCorr.boundaryField(), patchI)
{
if (pfCorr.boundaryField()[patchI].coupled())
if (pfCorr.boundaryField()[patchI].coupled())
{
pfCorr.boundaryField()[patchI].addField(pfCorr.internalField());
pfCorr.boundaryField()[patchI].addField(pfCorr.internalField());
}
}*/
}
*/
//Info << "pfCorr: " << pfCorr << endl;
pfCorr.correctBoundaryConditions();
//Info << "pfCorr: " << pfCorr << endl;
pfCorr.correctBoundaryConditions();
//pfCorr.write();

View file

@ -1,36 +1,36 @@
if (runTime.outputTime())
{
{
volScalarField epsilonEq
(
IOobject
(
"epsilonEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((2.0/3.0)*magSqr(dev(epsilon)))
);
(
IOobject
(
"epsilonEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((2.0/3.0)*magSqr(dev(epsilon)))
);
Info<< "Max epsilonEq = " << max(epsilonEq).value()
<< endl;
volScalarField sigmaEq
(
IOobject
(
"sigmaEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((3.0/2.0)*magSqr(dev(sigma)))
);
(
IOobject
(
"sigmaEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((3.0/2.0)*magSqr(dev(sigma)))
);
Info<< "Max sigmaEq = " << max(sigmaEq).value()
<< endl;
Info<< "Max sigmaEq = " << max(sigmaEq).value()
<< endl;
runTime.write();
}
runTime.write();
}

View file

@ -6,26 +6,24 @@ aitkenDelta = (U - U.prevIter()) / aitkenInitialRes;
// update relaxation factor
if(iCorr == 0)
{
{
aitkenTheta = 0.01;
}
else
{
vectorField b = aitkenDelta.internalField() - aitkenDelta.prevIter().internalField();
//scalar sumMagB = gSum(mag(b));
scalar sumMagB = gSum(magSqr(b));
if(sumMagB < SMALL)
{
//Warning << "Aitken under-relaxation: denominator less then SMALL"
// << endl;
sumMagB += SMALL;
}
}
else
{
vectorField b = aitkenDelta.internalField() - aitkenDelta.prevIter().internalField();
//scalar sumMagB = gSum(mag(b));
scalar sumMagB = gSum(magSqr(b));
if(sumMagB < SMALL)
{
//Warning << "Aitken under-relaxation: denominator less then SMALL"
// << endl;
sumMagB += SMALL;
}
aitkenTheta = -aitkenTheta*
gSum(aitkenDelta.prevIter().internalField() & b)
/
sumMagB;
}
aitkenTheta = -aitkenTheta*
gSum(aitkenDelta.prevIter().internalField() & b)/sumMagB;
}
// correction to the latest U
U += aitkenTheta*aitkenDelta*aitkenInitialRes;

View file

@ -1,25 +1,27 @@
if(divSigmaExpMethod == "standard")
{
{
//- calculating the full gradient has good convergence and no high freq oscillations
divSigmaExp = fvc::div(C && epsilon) - fvc::div(K & gradU);
}
else if(divSigmaExpMethod == "surface")
{
//- this form seems to have the best convergence
divSigmaExp =
fvc::div(mesh.magSf()*
}
else if(divSigmaExpMethod == "surface")
{
//- this form seems to have the best convergence
divSigmaExp = fvc::div
(
mesh.magSf()*
(
(n&(Cf && fvc::interpolate(symm(gradU))))
- (n&(Kf & fvc::interpolate(gradU)))
)
);
}
else if(divSigmaExpMethod == "laplacian")
{
//- causes high freq oscillations and slow convergence
divSigmaExp = fvc::div(sigma) - fvc::laplacian(K,U);
}
else
{
FatalError << "divSigmaExp method " << divSigmaExpMethod << " not found!" << endl;
}
(n & (Cf && fvc::interpolate(symm(gradU))))
- (n & (Kf & fvc::interpolate(gradU)))
)
);
}
else if(divSigmaExpMethod == "laplacian")
{
//- causes high freq oscillations and slow convergence
divSigmaExp = fvc::div(sigma) - fvc::laplacian(K, U);
}
else
{
FatalErrorIn(args.executable())
<< "divSigmaExp method " << divSigmaExpMethod << " not found!" << endl;
}

View file

@ -1,19 +1,19 @@
{
// force residual is the net force on the model
// this should got to zero in a converged steady state model
// should be altered for parallel runs
vector netForce = vector::zero;
forAll(mesh.boundary(), patchi)
// force residual is the net force on the model
// this should got to zero in a converged steady state model
// should be altered for parallel runs
vector netForce = vector::zero;
forAll(mesh.boundary(), patchi)
{
netForce +=
sum(
mesh.Sf().boundaryField()[patchi]
&
netForce += sum
(
2*mu.boundaryField()[patchi]*symm(gradU.boundaryField()[patchi])
+ lambda*tr(gradU.boundaryField()[patchi])*I
)
mesh.Sf().boundaryField()[patchi]
&
(
2*mu.boundaryField()[patchi]*symm(gradU.boundaryField()[patchi])
+ lambda*tr(gradU.boundaryField()[patchi])*I
)
);
}
forceResidual = mag(netForce);
forceResidual = mag(netForce);
}

View file

@ -1,22 +1,22 @@
{
surfaceVectorField n = mesh.Sf()/mesh.magSf();
// traction = (n&fvc::interpolate(sigma));
// traction = (n & fvc::interpolate(sigma));
// surfaceTensorField sGradU =
// ((I - n*n)&fvc::interpolate(gradU));
// ((I - n*n) & fvc::interpolate(gradU));
// traction =
// (2*mu + lambda)*snGradU
// - (mu + lambda)*(snGradU&(I - n*n))
// + mu*(sGradU&n)
// + mu*(sGradU & n)
// + lambda*tr(sGradU&(I - n*n))*n;
// traction =
// (2*mu + lambda)*fvc::snGrad(U)
// - (mu + lambda)*(n&sGradU)
// + mu*(sGradU&n)
// + lambda*tr(sGradU)*n;
// traction =
// (2*mu + lambda)*fvc::snGrad(U)
// - (mu + lambda)*(n & sGradU)
// + mu*(sGradU & n)
// + lambda*tr(sGradU)*n;
// philipc
// I am having trouble with back-calculation of interface tractions from solid interface
@ -27,15 +27,15 @@
traction = (n&fvc::interpolate(sigma));
// forAll(traction.boundaryField(), patchi)
// {
// {
// if (mesh.boundary()[patchi].type() == "cohesive")
// {
// {
// forAll(traction.boundaryField()[patchi], facei)
// {
// Pout << "face " << facei << " with traction magnitude "
// << mag(traction.boundaryField()[patchi][facei])/1e6 << " MPa and traction "
// << traction.boundaryField()[patchi][facei]/1e6 << " MPa" << endl;
// }
// }
// }
// {
// Pout << "face " << facei << " with traction magnitude "
// << mag(traction.boundaryField()[patchi][facei])/1e6 << " MPa and traction "
// << traction.boundaryField()[patchi][facei]/1e6 << " MPa" << endl;
// }
// }
// }
}

View file

@ -1,53 +1,53 @@
label cohesivePatchID = -1;
solidCohesiveFvPatchVectorField* cohesivePatchUPtr = NULL;
solidCohesiveFixedModeMixFvPatchVectorField* cohesivePatchUFixedModePtr = NULL;
solidCohesiveFvPatchVectorField* cohesivePatchUPtr = NULL;
solidCohesiveFixedModeMixFvPatchVectorField* cohesivePatchUFixedModePtr = NULL;
forAll (U.boundaryField(), patchI)
{
if (isA<solidCohesiveFvPatchVectorField>(U.boundaryField()[patchI]))
if (isA<solidCohesiveFvPatchVectorField>(U.boundaryField()[patchI]))
{
cohesivePatchID = patchI;
cohesivePatchUPtr =
&refCast<solidCohesiveFvPatchVectorField>
(
U.boundaryField()[cohesivePatchID]
);
break;
cohesivePatchID = patchI;
cohesivePatchUPtr =
&refCast<solidCohesiveFvPatchVectorField>
(
U.boundaryField()[cohesivePatchID]
);
break;
}
else if (isA<solidCohesiveFixedModeMixFvPatchVectorField>(U.boundaryField()[patchI]))
{
cohesivePatchID = patchI;
cohesivePatchUFixedModePtr =
&refCast<solidCohesiveFixedModeMixFvPatchVectorField>
(
U.boundaryField()[cohesivePatchID]
);
break;
}
else if (isA<solidCohesiveFixedModeMixFvPatchVectorField>(U.boundaryField()[patchI]))
{
cohesivePatchID = patchI;
cohesivePatchUFixedModePtr =
&refCast<solidCohesiveFixedModeMixFvPatchVectorField>
(
U.boundaryField()[cohesivePatchID]
);
break;
}
}
if(cohesivePatchID == -1)
{
FatalErrorIn(args.executable())
<< "Can't find cohesiveLawFvPatch" << nl
<< "One of the boundary patches in " << U.name() << ".boundaryField() "
<< "should be of type " << solidCohesiveFvPatchVectorField::typeName
<< "or " << solidCohesiveFixedModeMixFvPatchVectorField::typeName
<< abort(FatalError);
<< "One of the boundary patches in " << U.name() << ".boundaryField() "
<< "should be of type " << solidCohesiveFvPatchVectorField::typeName
<< "or " << solidCohesiveFixedModeMixFvPatchVectorField::typeName
<< abort(FatalError);
}
// solidCohesiveFvPatchVectorField& cohesivePatchU =
// refCast<solidCohesiveFvPatchVectorField>
// (
// U.boundaryField()[cohesivePatchID]
// U.boundaryField()[cohesivePatchID]
// );
// philipc: I have moved cohesive stuff to constitutiveModel
// cohesiveZone is an index field
// which allows the user to limit the crack to certain areas at runtime
// 1 for faces within cohesiveZone
// 0 for faces outside cohesiveZone
// philipc: I have moved cohesive stuff to constitutiveModel
// cohesiveZone is an index field
// which allows the user to limit the crack to certain areas at runtime
// 1 for faces within cohesiveZone
// 0 for faces outside cohesiveZone
surfaceScalarField cohesiveZone
(
IOobject
@ -64,85 +64,87 @@
// limit crack to specified boxes
{
const dictionary& stressControl =
mesh.solutionDict().subDict("solidMechanics");
const dictionary& stressControl =
mesh.solutionDict().subDict("solidMechanics");
List<boundBox> userBoxes(stressControl.lookup("crackLimitingBoxes"));
const surfaceVectorField& Cf = mesh.Cf();
forAll(cohesiveZone.internalField(), faceI)
{
bool faceInsideBox = false;
forAll(userBoxes, boxi)
List<boundBox> userBoxes(stressControl.lookup("crackLimitingBoxes"));
const surfaceVectorField& Cf = mesh.Cf();
forAll(cohesiveZone.internalField(), faceI)
{
if(userBoxes[boxi].contains(Cf.internalField()[faceI])) faceInsideBox = true;
}
bool faceInsideBox = false;
if(faceInsideBox)
{
cohesiveZone.internalField()[faceI] = 1.0;
}
}
forAll(cohesiveZone.boundaryField(), patchI)
{
// cracks may go along proc boundaries
if(mesh.boundaryMesh()[patchI].type() == processorPolyPatch::typeName)
{
forAll(cohesiveZone.boundaryField()[patchI], faceI)
{
bool faceInsideBox = false;
forAll(userBoxes, boxi)
forAll(userBoxes, boxi)
{
if(userBoxes[boxi].contains(Cf.boundaryField()[patchI][faceI])) faceInsideBox = true;
if(userBoxes[boxi].contains(Cf.internalField()[faceI])) faceInsideBox = true;
}
if(faceInsideBox)
if(faceInsideBox)
{
cohesiveZone.boundaryField()[patchI][faceI] = 1.0;
cohesiveZone.internalField()[faceI] = 1.0;
}
}
}
}
Info << "\nThere are " << gSum(cohesiveZone.internalField()) << " potential internal crack faces" << nl << endl;
Info << "\nThere are " << gSum(cohesiveZone.boundaryField())/2 << " potential coupled boundary crack faces" << nl << endl;
forAll(cohesiveZone.boundaryField(), patchI)
{
// cracks may go along proc boundaries
if(mesh.boundaryMesh()[patchI].type() == processorPolyPatch::typeName)
{
forAll(cohesiveZone.boundaryField()[patchI], faceI)
{
bool faceInsideBox = false;
// write field for visualisation
volScalarField cohesiveZoneVol
(
IOobject
(
"cohesiveZoneVol",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0)
);
forAll(cohesiveZone.internalField(), facei)
{
if(cohesiveZone.internalField()[facei])
{
cohesiveZoneVol.internalField()[mesh.owner()[facei]] = 1.0;
cohesiveZoneVol.internalField()[mesh.neighbour()[facei]] = 1.0;
forAll(userBoxes, boxi)
{
if(userBoxes[boxi].contains(Cf.boundaryField()[patchI][faceI])) faceInsideBox = true;
}
if(faceInsideBox)
{
cohesiveZone.boundaryField()[patchI][faceI] = 1.0;
}
}
}
}
}
forAll(cohesiveZone.boundaryField(), patchi)
{
forAll(cohesiveZone.boundaryField()[patchi], facei)
Info << "\nThere are " << gSum(cohesiveZone.internalField()) << " potential internal crack faces" << nl << endl;
Info << "\nThere are " << gSum(cohesiveZone.boundaryField())/2 << " potential coupled boundary crack faces" << nl << endl;
// write field for visualisation
volScalarField cohesiveZoneVol
(
IOobject
(
"cohesiveZoneVol",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0)
);
forAll(cohesiveZone.internalField(), facei)
{
if(cohesiveZone.boundaryField()[patchi][facei] > 0.0)
if(cohesiveZone.internalField()[facei])
{
cohesiveZoneVol.internalField()[mesh.owner()[facei]] = 1.0;
cohesiveZoneVol.internalField()[mesh.neighbour()[facei]] = 1.0;
}
}
forAll(cohesiveZone.boundaryField(), patchi)
{
cohesiveZoneVol.boundaryField()[patchi][facei] = 1.0;
forAll(cohesiveZone.boundaryField()[patchi], facei)
{
if(cohesiveZone.boundaryField()[patchi][facei] > 0.0)
{
cohesiveZoneVol.boundaryField()[patchi][facei] = 1.0;
}
}
}
}
}
Info << "Writing cohesiveZone field" << endl;
cohesiveZoneVol.write();
Info << "Writing cohesiveZone field" << endl;
cohesiveZoneVol.write();
}

View file

@ -35,8 +35,8 @@
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimless, vector::zero)
mesh,
dimensionedVector("zero", dimless, vector::zero)
);
volVectorField V
@ -80,19 +80,19 @@
dimensionedSymmTensor("zero", dimForce/dimArea, symmTensor::zero)
);
volVectorField divSigmaExp
(
volVectorField divSigmaExp
(
IOobject
(
"divSigmaExp",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
"divSigmaExp",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimForce/dimVolume, vector::zero)
);
);
constitutiveModel rheology(sigma, U);
@ -122,11 +122,12 @@
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimLength, vector::zero)
dimensionedVector("zero", dimLength, vector::zero)
);
// aitken relaxation factor
scalar aitkenInitialRes = 1.0;
scalar aitkenTheta = 0.1;
// aitken relaxation factor
scalar aitkenInitialRes = 1.0;
scalar aitkenTheta = 0.1;
// volVectorField resid
// (
@ -139,5 +140,5 @@ scalar aitkenTheta = 0.1;
// IOobject::AUTO_WRITE
// ),
// mesh,
// dimensionedVector("zero", dimless, vector::zero)
// dimensionedVector("zero", dimless, vector::zero)
// );

View file

@ -1,14 +1,14 @@
OFstream * filePtr(NULL);
OFstream* filePtr(NULL);
word historyPatchName(mesh.solutionDict().subDict("solidMechanics").lookup("historyPatch"));
label historyPatchID = mesh.boundaryMesh().findPatchID(historyPatchName);
if(historyPatchID == -1)
{
{
Warning << "history patch " << historyPatchName
<< " not found. Force-displacement will not be written"
<< endl;
}
else if(Pstream::master())
{
}
else if(Pstream::master())
{
Info << "Force-displacement for patch " << historyPatchName
<< " will be written to forceDisp.dat"
<< endl;
@ -17,4 +17,4 @@ if(historyPatchID == -1)
filePtr = new OFstream(hisDirName/historyPatchName+"forceDisp.dat");
OFstream& forceDispFile = *filePtr;
forceDispFile << "#Disp(mm)\tForce(N)" << endl;
}
}

View file

@ -58,213 +58,212 @@ Author
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createCrackerMesh.H"
# include "createFields.H"
# include "createCrack.H"
//# include "createReference.H"
# include "createHistory.H"
# include "readDivSigmaExpMethod.H"
# include "createSolidInterfaceNoModify.H"
# include "setRootCase.H"
# include "createTime.H"
# include "createCrackerMesh.H"
# include "createFields.H"
# include "createCrack.H"
//# include "createReference.H"
# include "createHistory.H"
# include "readDivSigmaExpMethod.H"
# include "createSolidInterfaceNoModify.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
Info<< "\nStarting time loop\n" << endl;
lduMatrix::debug = 0;
lduMatrix::debug = 0;
scalar maxEffTractionFraction = 0;
scalar maxEffTractionFraction = 0;
// time rates for predictor
volTensorField gradV = fvc::ddt(gradU);
surfaceVectorField snGradV =
(snGradU - snGradU.oldTime())/runTime.deltaT();
// time rates for predictor
volTensorField gradV = fvc::ddt(gradU);
surfaceVectorField snGradV =
(snGradU - snGradU.oldTime())/runTime.deltaT();
//# include "initialiseSolution.H"
//# include "initialiseSolution.H"
while (runTime.run())
while (runTime.run())
{
# include "readSolidMechanicsControls.H"
# include "setDeltaT.H"
# include "readSolidMechanicsControls.H"
# include "setDeltaT.H"
runTime++;
runTime++;
Info<< "\nTime: " << runTime.timeName() << " s\n" << endl;
Info<< "\nTime = " << runTime.timeName() << " s\n" << endl;
volScalarField rho = rheology.rho();
volDiagTensorField K = rheology.K();
surfaceDiagTensorField Kf = fvc::interpolate(K, "K");
volSymmTensor4thOrderField C = rheology.C();
surfaceSymmTensor4thOrderField Cf = fvc::interpolate(C, "C");
volScalarField rho = rheology.rho();
volDiagTensorField K = rheology.K();
surfaceDiagTensorField Kf = fvc::interpolate(K, "K");
volSymmTensor4thOrderField C = rheology.C();
surfaceSymmTensor4thOrderField Cf = fvc::interpolate(C, "C");
solidInterfacePtr->modifyProperties(Cf, Kf);
solidInterfacePtr->modifyProperties(Cf, Kf);
//# include "waveCourantNo.H"
//# include "waveCourantNo.H"
int iCorr = 0;
lduMatrix::solverPerformance solverPerf;
scalar initialResidual = 0;
scalar relativeResidual = 1;
//scalar forceResidual = 1;
label nFacesToBreak = 0;
label nCoupledFacesToBreak = 0;
bool topoChange = false;
int iCorr = 0;
lduMatrix::solverPerformance solverPerf;
scalar initialResidual = 0;
scalar relativeResidual = 1;
//scalar forceResidual = 1;
label nFacesToBreak = 0;
label nCoupledFacesToBreak = 0;
bool topoChange = false;
//bool noMoreCracks = false;
//bool noMoreCracks = false;
// Predictor step using time rates
if (predictor)
{
Info << "Predicting U, gradU and snGradU using velocity"
<< endl;
U += V*runTime.deltaT();
gradU += gradV*runTime.deltaT();
snGradU += snGradV*runTime.deltaT();
}
// Predictor step using time rates
if (predictor)
{
Info<< "Predicting U, gradU and snGradU using velocity"
<< endl;
U += V*runTime.deltaT();
gradU += gradV*runTime.deltaT();
snGradU += snGradV*runTime.deltaT();
}
do
{
surfaceVectorField n = mesh.Sf()/mesh.magSf();
do
{
U.storePrevIter();
do
{
surfaceVectorField n = mesh.Sf()/mesh.magSf();
do
{
U.storePrevIter();
# include "calculateDivSigmaExp.H"
# include "calculateDivSigmaExp.H"
fvVectorMatrix UEqn
(
rho*fvm::d2dt2(U)
==
fvm::laplacian(Kf, U, "laplacian(K,U)")
+ divSigmaExp
);
fvVectorMatrix UEqn
(
rho*fvm::d2dt2(U)
==
fvm::laplacian(Kf, U, "laplacian(K,U)")
+ divSigmaExp
);
//# include "setReference.H"
//# include "setReference.H"
if(solidInterfacePtr)
{
solidInterfacePtr->correct(UEqn);
}
if(solidInterfacePtr)
{
solidInterfacePtr->correct(UEqn);
}
if (relaxEqn)
{
UEqn.relax();
}
if (relaxEqn)
{
UEqn.relax();
}
solverPerf = UEqn.solve();
solverPerf = UEqn.solve();
if (aitkenRelax)
{
# include "aitkenRelaxation.H"
}
else
{
U.relax();
}
if (aitkenRelax)
{
# include "aitkenRelaxation.H"
}
else
{
U.relax();
}
if (iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
aitkenInitialRes = gMax(mag(U.internalField()));
}
if (iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
aitkenInitialRes = gMax(mag(U.internalField()));
}
//gradU = solidInterfacePtr->grad(U);
// use leastSquaresSolidInterface grad scheme
gradU = fvc::grad(U);
//gradU = solidInterfacePtr->grad(U);
// use leastSquaresSolidInterface grad scheme
gradU = fvc::grad(U);
# include "calculateRelativeResidual.H"
# include "calculateRelativeResidual.H"
if (iCorr % infoFrequency == 0)
{
Info<< "\tTime " << runTime.value()
<< ", Corr " << iCorr
<< ", Solving for " << U.name()
<< " using " << solverPerf.solverName()
<< ", res = " << solverPerf.initialResidual()
<< ", rel res = " << relativeResidual;
if (aitkenRelax)
{
Info << ", aitken = " << aitkenTheta;
}
Info << ", inner iters " << solverPerf.nIterations() << endl;
}
}
while
(
//iCorr++ == 0
iCorr++ < 10
||
(
//solverPerf.initialResidual() > convergenceTolerance
relativeResidual > convergenceTolerance
&& iCorr < nCorr
)
);
if (iCorr % infoFrequency == 0)
{
Info << "\tTime " << runTime.value()
<< ", Corr " << iCorr
<< ", Solving for " << U.name()
<< " using " << solverPerf.solverName()
<< ", res = " << solverPerf.initialResidual()
<< ", rel res = " << relativeResidual;
if (aitkenRelax)
{
Info << ", aitken = " << aitkenTheta;
}
Info << ", inner iters " << solverPerf.nIterations() << endl;
}
}
while
(
//iCorr++ == 0
iCorr++ < 10
||
(
//solverPerf.initialResidual() > convergenceTolerance
relativeResidual > convergenceTolerance
&&
iCorr < nCorr
)
);
Info<< "Solving for " << U.name() << " using "
<< solverPerf.solverName()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", No outer iterations " << iCorr
<< ", Relative residual " << relativeResidual << endl;
Info<< "Solving for " << U.name() << " using "
<< solverPerf.solverName()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", No outer iterations " << iCorr
<< ", Relative residual " << relativeResidual << endl;
# include "calculateTraction.H"
# include "updateCrack.H"
# include "calculateTraction.H"
# include "updateCrack.H"
Info<< "Max effective traction fraction: "
<< maxEffTractionFraction << endl;
Info << "Max effective traction fraction: "
<< maxEffTractionFraction << endl;
// reset counter if faces want to crack
if ((nFacesToBreak > 0) || (nCoupledFacesToBreak > 0)) iCorr = 0;
}
while( (nFacesToBreak > 0) || (nCoupledFacesToBreak > 0));
// reset counter if faces want to crack
if ((nFacesToBreak > 0) || (nCoupledFacesToBreak > 0)) iCorr = 0;
}
while( (nFacesToBreak > 0) || (nCoupledFacesToBreak > 0));
if (cohesivePatchUPtr)
{
if (returnReduce(cohesivePatchUPtr->size(), sumOp<label>()))
{
cohesivePatchUPtr->cracking();
}
}
else
{
if
(
returnReduce
(
cohesivePatchUFixedModePtr->size(),
sumOp<label>()
)
)
{
Pout << "Number of faces in crack: "
<< cohesivePatchUFixedModePtr->size() << endl;
cohesivePatchUFixedModePtr->relativeSeparationDistance();
}
}
if (cohesivePatchUPtr)
{
if (returnReduce(cohesivePatchUPtr->size(), sumOp<label>()))
{
cohesivePatchUPtr->cracking();
}
}
else
{
if
(
returnReduce
(
cohesivePatchUFixedModePtr->size(),
sumOp<label>())
)
{
Pout << "Number of faces in crack: "
<< cohesivePatchUFixedModePtr->size() << endl;
cohesivePatchUFixedModePtr->relativeSeparationDistance();
}
}
// update time rates for predictor
if (predictor)
{
V = fvc::ddt(U);
gradV = fvc::ddt(gradU);
snGradV = (snGradU - snGradU.oldTime())/runTime.deltaT();
}
// update time rates for predictor
if (predictor)
{
V = fvc::ddt(U);
gradV = fvc::ddt(gradU);
snGradV = (snGradU - snGradU.oldTime())/runTime.deltaT();
}
# include "calculateEpsilonSigma.H"
# include "writeFields.H"
# include "writeHistory.H"
# include "calculateEpsilonSigma.H"
# include "writeFields.H"
# include "writeHistory.H"
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s\n\n"
<< endl;
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s\n\n"
<< endl;
}
Info<< "End\n" << endl;
Info<< "End\n" << endl;
return(0);
return(0);
}

View file

@ -3,8 +3,8 @@ word divSigmaExpMethod(mesh.solutionDict().subDict("solidMechanics").lookup("div
Info << "Selecting divSigmaExp calculation method " << divSigmaExpMethod << endl;
// if(divSigmaExpMethod != "standard" && divSigmaExpMethod != "surface" && divSigmaExpMethod != "decompose" && divSigmaExpMethod != "laplacian")
if(divSigmaExpMethod != "standard" && divSigmaExpMethod != "surface" && divSigmaExpMethod != "laplacian")
{
{
FatalError << "divSigmaExp method " << divSigmaExpMethod << " not found!" << nl
<< "valid methods are:\nstandard\nsurface\nlaplacian"
<< exit(FatalError);
}
<< "valid methods are:\nstandard\nsurface\nlaplacian"
<< exit(FatalError);
}

View file

@ -12,7 +12,7 @@ Switch aitkenRelax(stressControl.lookup("aitkenRelaxation"));
Switch relaxEqn(stressControl.lookup("relaxEqn"));
if(relaxEqn && solidInterfaceCorr)
{
{
FatalError << "relaxEqn and solidInterface may not be used concurrently"
<< exit(FatalError);
}
<< exit(FatalError);
}

View file

@ -1,36 +1,36 @@
if (dynamicTimeStep)
{
{
if
(
//(maxEffTraction < 0.999*CzLaw.sigmaMax().value())
(returnReduce(maxEffTractionFraction, maxOp<scalar>()) < 0.99)
//&& (cohesivePatchU.size() == 0)
&& (mag(runTime.deltaT().value() - deltaTmax) < SMALL)
)
{
(
//(maxEffTraction < 0.999*CzLaw.sigmaMax().value())
(returnReduce(maxEffTractionFraction, maxOp<scalar>()) < 0.99)
//&& (cohesivePatchU.size() == 0)
&& (mag(runTime.deltaT().value() - deltaTmax) < SMALL)
)
{
runTime.setDeltaT(deltaTmax);
}
}
else
{
{
scalar newDeltaT = deltaTmin;
if (newDeltaT/runTime.deltaT().value() < 0.5)
{
{
newDeltaT = 0.5*runTime.deltaT().value();
Info << "Reducing time step" << nl;
}
}
runTime.setDeltaT(newDeltaT);
}
}
Pout << "Current time step size: "
<< runTime.deltaT().value() << " s" << endl;
<< runTime.deltaT().value() << " s" << endl;
scalar maxDT = runTime.deltaT().value();
if(mag(returnReduce(maxDT, maxOp<scalar>()) - runTime.deltaT().value()) > SMALL)
{
{
FatalError << "Processors have different time-steps!"
<< exit(FatalError);
}
}
<< exit(FatalError);
}
}

View file

@ -28,7 +28,7 @@ nCoupledFacesToBreak = 0;
//scalarField effTractionFraction = effTraction/sigmaMax;
scalarField effTractionFraction(normalTraction.size(), 0.0);
if (cohesivePatchUPtr)
if(cohesivePatchUPtr)
{
effTractionFraction =
(normalTraction/sigmaMaxI)*(normalTraction/sigmaMaxI)
@ -41,6 +41,7 @@ nCoupledFacesToBreak = 0;
(normalTraction/sigmaMaxI)*(normalTraction/sigmaMaxI)
+ (shearTraction/sigmaMaxI)*(shearTraction/sigmaMaxI);
}
maxEffTractionFraction = gMax(effTractionFraction);
SLList<label> facesToBreakList;
@ -85,7 +86,6 @@ nCoupledFacesToBreak = 0;
{
faceToBreakEffTractionFraction =
facesToBreakEffTractionFraction[faceI];
faceToBreakIndex = facesToBreak[faceI];
}
}
@ -135,59 +135,59 @@ nCoupledFacesToBreak = 0;
if (mesh.boundary()[patchI].coupled())
{
// scalarField pEffTraction =
// cohesiveZone.boundaryField()[patchI] *
// mag(traction.boundaryField()[patchI]);
// scalarField pEffTractionFraction = pEffTraction/sigmaMax.boundaryField()[patchI];
// cohesiveZone.boundaryField()[patchI]*
// mag(traction.boundaryField()[patchI]);
// scalarField pEffTractionFraction = pEffTraction/sigmaMax.boundaryField()[patchI];
scalarField pNormalTraction =
cohesiveZone.boundaryField()[patchI] *
( n.boundaryField()[patchI] & traction.boundaryField()[patchI] );
scalarField pNormalTraction =
cohesiveZone.boundaryField()[patchI]*
( n.boundaryField()[patchI] & traction.boundaryField()[patchI] );
// only consider tensile tractions
pNormalTraction = max(pNormalTraction, scalar(0));
scalarField pShearTraction =
cohesiveZone.boundaryField()[patchI] *
mag( (I - Foam::sqr(n.boundaryField()[patchI])) & traction.boundaryField()[patchI] );
// only consider tensile tractions
pNormalTraction = max(pNormalTraction, scalar(0));
// the traction fraction is monitored to decide which faces to break:
// ie (tN/tNC)^2 + (tS/tSC)^2 >1 to crack a face
const scalarField& pSigmaMax = sigmaMax.boundaryField()[patchI];
const scalarField& pTauMax = tauMax.boundaryField()[patchI];
scalarField pShearTraction =
cohesiveZone.boundaryField()[patchI]*
mag( (I - Foam::sqr(n.boundaryField()[patchI])) & traction.boundaryField()[patchI] );
scalarField pEffTractionFraction(pNormalTraction.size(), 0);
// the traction fraction is monitored to decide which faces to break:
// ie (tN/tNC)^2 + (tS/tSC)^2 >1 to crack a face
const scalarField& pSigmaMax = sigmaMax.boundaryField()[patchI];
const scalarField& pTauMax = tauMax.boundaryField()[patchI];
if(cohesivePatchUPtr)
{
pEffTractionFraction =
(pNormalTraction/pSigmaMax)*(pNormalTraction/pSigmaMax)
+ (pShearTraction/pTauMax)*(pShearTraction/pTauMax);
}
else
{
// solidCohesiveFixedModeMix only uses sigmaMax
pEffTractionFraction =
(pNormalTraction/pSigmaMax)*(pNormalTraction/pSigmaMax)
+ (pShearTraction/pSigmaMax)*(pShearTraction/pSigmaMax);
}
scalarField pEffTractionFraction(pNormalTraction.size(), 0.0);
if(cohesivePatchUPtr)
{
pEffTractionFraction =
(pNormalTraction/pSigmaMax)*(pNormalTraction/pSigmaMax)
+ (pShearTraction/pTauMax)*(pShearTraction/pTauMax);
}
else
{
// solidCohesiveFixedModeMix only uses sigmaMax
pEffTractionFraction =
(pNormalTraction/pSigmaMax)*(pNormalTraction/pSigmaMax)
+ (pShearTraction/pSigmaMax)*(pShearTraction/pSigmaMax);
}
label start = mesh.boundaryMesh()[patchI].start();
label start = mesh.boundaryMesh()[patchI].start();
forAll(pEffTractionFraction, faceI)
{
if (pEffTractionFraction[faceI] > maxEffTractionFraction)
{
maxEffTractionFraction = pEffTractionFraction[faceI];
}
forAll(pEffTractionFraction, faceI)
{
if (pEffTractionFraction[faceI] > maxEffTractionFraction)
{
maxEffTractionFraction = pEffTractionFraction[faceI];
}
if (pEffTractionFraction[faceI] > 1.0)
{
coupledFacesToBreakList.insert(start + faceI);
coupledFacesToBreakEffTractionFractionList.insert
(
pEffTractionFraction[faceI]
);
}
}
if (pEffTractionFraction[faceI] > 1.0)
{
coupledFacesToBreakList.insert(start + faceI);
coupledFacesToBreakEffTractionFractionList.insert
(
pEffTractionFraction[faceI]
);
}
}
}
}
@ -274,8 +274,8 @@ nCoupledFacesToBreak = 0;
labelList index(Pstream::nProcs(), -1);
if (nCoupledFacesToBreak)
{
label patchID =
mesh.boundaryMesh().whichPatch(coupledFaceToBreakIndex);
label patchID =
mesh.boundaryMesh().whichPatch(coupledFaceToBreakIndex);
label start = mesh.boundaryMesh()[patchID].start();
label localIndex = coupledFaceToBreakIndex - start;
@ -333,6 +333,7 @@ nCoupledFacesToBreak = 0;
vector faceToBreakNormal = vector::zero;
scalar faceToBreakSigmaMax = 0.0;
scalar faceToBreakTauMax = 0.0;
// Set faces to break
if (nFacesToBreak > 0)
{
@ -340,31 +341,39 @@ nCoupledFacesToBreak = 0;
faceToBreakNormal = n.internalField()[faceToBreakIndex];
// Scale broken face traction
faceToBreakSigmaMax = sigmaMaxI[faceToBreakIndex];
faceToBreakTauMax = tauMaxI[faceToBreakIndex];
scalar normalTrac = faceToBreakNormal & faceToBreakTraction;
normalTrac = max(normalTrac, 0.0);
scalar shearTrac = mag( (I - sqr(faceToBreakNormal)) & faceToBreakTraction );
scalar scaleFactor = 1;
if(cohesivePatchUPtr)
{
scaleFactor =
::sqrt(1 / (
(normalTrac/faceToBreakSigmaMax)*(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakTauMax)*(shearTrac/faceToBreakTauMax)
) );
}
else
faceToBreakSigmaMax = sigmaMaxI[faceToBreakIndex];
faceToBreakTauMax = tauMaxI[faceToBreakIndex];
scalar normalTrac = faceToBreakNormal & faceToBreakTraction;
normalTrac = max(normalTrac, 0.0);
scalar shearTrac = mag( (I - sqr(faceToBreakNormal)) & faceToBreakTraction );
scalar scaleFactor = 1;
if(cohesivePatchUPtr)
{
// solidCohesiveFixedModeMix only uses sigmaMax
scaleFactor =
::sqrt(1 / (
(normalTrac/faceToBreakSigmaMax)*(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakSigmaMax)*(shearTrac/faceToBreakSigmaMax)
) );
scaleFactor =
Foam::sqrt
(
1 /
(
(normalTrac/faceToBreakSigmaMax)*(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakTauMax)*(shearTrac/faceToBreakTauMax)
)
);
}
else
{
// solidCohesiveFixedModeMix only uses sigmaMax
scaleFactor =
Foam::sqrt
(
1 /
(
(normalTrac/faceToBreakSigmaMax)*(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakSigmaMax)*(shearTrac/faceToBreakSigmaMax)
)
);
}
faceToBreakTraction *= scaleFactor;
faceToBreakTraction *= scaleFactor;
topoChange = true;
}
@ -379,29 +388,37 @@ nCoupledFacesToBreak = 0;
faceToBreakNormal = n.boundaryField()[patchID][localIndex];
// Scale broken face traction
faceToBreakSigmaMax = sigmaMax.boundaryField()[patchID][localIndex];
faceToBreakTauMax = tauMax.boundaryField()[patchID][localIndex];
scalar normalTrac = faceToBreakNormal & faceToBreakTraction;
normalTrac = max(normalTrac, 0.0);
scalar shearTrac = mag( (I - sqr(faceToBreakNormal)) & faceToBreakTraction );
scalar scaleFactor = 1;
if(cohesivePatchUPtr)
{
scaleFactor =
::sqrt(1 / (
(normalTrac/faceToBreakSigmaMax)*(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakTauMax)*(shearTrac/faceToBreakTauMax)
) );
}
else
{
// solidCohesiveFixedModeMix only uses sigmaMax
scaleFactor =
::sqrt(1 / (
(normalTrac/faceToBreakSigmaMax)*(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakSigmaMax)*(shearTrac/faceToBreakSigmaMax)
) );
}
faceToBreakSigmaMax = sigmaMax.boundaryField()[patchID][localIndex];
faceToBreakTauMax = tauMax.boundaryField()[patchID][localIndex];
scalar normalTrac = faceToBreakNormal & faceToBreakTraction;
normalTrac = max(normalTrac, 0.0);
scalar shearTrac = mag( (I - sqr(faceToBreakNormal)) & faceToBreakTraction );
scalar scaleFactor = 1;
if(cohesivePatchUPtr)
{
scaleFactor =
Foam::sqrt
(
1 /
(
(normalTrac/faceToBreakSigmaMax)*(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakTauMax)*(shearTrac/faceToBreakTauMax)
)
);
}
else
{
// solidCohesiveFixedModeMix only uses sigmaMax
scaleFactor =
Foam::sqrt
(
1 /
(
(normalTrac/faceToBreakSigmaMax)*(normalTrac/faceToBreakSigmaMax)
+ (shearTrac/faceToBreakSigmaMax)*(shearTrac/faceToBreakSigmaMax)
)
);
}
faceToBreakTraction *= scaleFactor;
@ -441,20 +458,20 @@ nCoupledFacesToBreak = 0;
Cf = fvc::interpolate(C);
Kf = fvc::interpolate(K);
// we need to modify propertiess after cracking otherwise momentum equation is wrong
// but solidInterface seems to hold some information about old mesh
// so we will delete it and make another
// we could probably add a public clearout function
// create new solidInterface
//Pout << "Creating new solidInterface" << endl;
//delete solidInterfacePtr;
//solidInterfacePtr = new solidInterface(mesh, rheology);
// delete demand driven data as the mesh has changed
if(rheology.solidInterfaceActive())
{
rheology.solInterface().clearOut();
solidInterfacePtr->modifyProperties(Cf, Kf);
}
// we need to modify propertiess after cracking otherwise momentum equation is wrong
// but solidInterface seems to hold some information about old mesh
// so we will delete it and make another
// we could probably add a public clearout function
// create new solidInterface
//Pout << "Creating new solidInterface" << endl;
//delete solidInterfacePtr;
//solidInterfacePtr = new solidInterface(mesh, rheology);
// delete demand driven data as the mesh has changed
if(rheology.solidInterfaceActive())
{
rheology.solInterface().clearOut();
solidInterfacePtr->modifyProperties(Cf, Kf);
}
// Local crack displacement
vectorField UpI =
@ -466,21 +483,21 @@ nCoupledFacesToBreak = 0;
vectorField globalUpI = mesh.globalCrackField(UpI);
vectorField globalOldUpI = mesh.globalCrackField(oldUpI);
// C and K field on new crack faces must be updated
// C and K field on new crack faces must be updated
symmTensor4thOrderField CPI = C.boundaryField()[cohesivePatchID].patchInternalField();
diagTensorField KPI = K.boundaryField()[cohesivePatchID].patchInternalField();
symmTensor4thOrderField globalCPI = mesh.globalCrackField(CPI);
diagTensorField globalKPI = mesh.globalCrackField(KPI);
// cohesivePatchU.size()
int cohesivePatchSize(cohesivePatchUPtr ? cohesivePatchUPtr->size() : cohesivePatchUFixedModePtr->size());
// cohesivePatchU.size()
int cohesivePatchSize(cohesivePatchUPtr ? cohesivePatchUPtr->size() : cohesivePatchUFixedModePtr->size());
// Initialise U for new cohesive face
const labelList& gcfa = mesh.globalCrackFaceAddressing();
label globalIndex = mesh.localCrackStart();
// for (label i=0; i<cohesivePatchU.size(); i++)
for (label i=0; i<cohesivePatchSize; i++)
{
{
label oldFaceIndex = faceMap[start+i];
// If new face
@ -499,10 +516,10 @@ nCoupledFacesToBreak = 0;
+ globalOldUpI[gcfa[globalIndex]]
);
// initialise C and K on new faces
// set new face value to value of internal cell
Cf.boundaryField()[cohesivePatchID][i] = globalCPI[globalIndex];
Kf.boundaryField()[cohesivePatchID][i] = globalKPI[globalIndex];
// initialise C and K on new faces
// set new face value to value of internal cell
Cf.boundaryField()[cohesivePatchID][i] = globalCPI[globalIndex];
Kf.boundaryField()[cohesivePatchID][i] = globalKPI[globalIndex];
globalIndex++;
}
@ -513,87 +530,85 @@ nCoupledFacesToBreak = 0;
}
// we must calculate grad using interface
// U at the interface has not been calculated yet as interface.correct()
// has not been called yet
// not really a problem as gradU is correct in second outer iteration
// as long as this does not cause convergence problems for the first iterations.
// we should be able to calculate the interface displacements without
// having to call interface.correct()
// todo: add calculateInterfaceU() function
// interface grad uses Gauss, we need least squares
//gradU = solidInterfacePtr->grad(U);
// U at the interface has not been calculated yet as interface.correct()
// has not been called yet
// not really a problem as gradU is correct in second outer iteration
// as long as this does not cause convergence problems for the first iterations.
// we should be able to calculate the interface displacements without
// having to call interface.correct()
// todo: add calculateInterfaceU() function
// interface grad uses Gauss, we need least squares
//gradU = solidInterfacePtr->grad(U);
gradU = fvc::grad(U); // leastSquaresSolidInterface grad scheme
//snGradU = fvc::snGrad(U);
# include "calculateTraction.H"
//if (nFacesToBreak || nCoupledFacesToBreak) mesh.write(); traction.write();
//if (nFacesToBreak || nCoupledFacesToBreak) mesh.write(); traction.write();
// Initialise initiation traction for new cohesive patch face
// for (label i=0; i<cohesivePatchU.size(); i++)
for (label i=0; i<cohesivePatchSize; i++)
{
label oldFaceIndex = faceMap[start+i];
// If new face
if
(
(oldFaceIndex == faceToBreakIndex)
|| (oldFaceIndex == coupledFaceToBreakIndex)
)
for (label i=0; i<cohesivePatchSize; i++)
{
vector n0 =
mesh.Sf().boundaryField()[cohesivePatchID][i]
/mesh.magSf().boundaryField()[cohesivePatchID][i];
//vector n1 = -n0;
label oldFaceIndex = faceMap[start+i];
if ((n0&faceToBreakNormal) > SMALL)
// If new face
if
(
(oldFaceIndex == faceToBreakIndex)
|| (oldFaceIndex == coupledFaceToBreakIndex)
)
{
traction.boundaryField()[cohesivePatchID][i] =
faceToBreakTraction;
vector n0 =
mesh.Sf().boundaryField()[cohesivePatchID][i]
/mesh.magSf().boundaryField()[cohesivePatchID][i];
//vector n1 = -n0;
traction.oldTime().boundaryField()[cohesivePatchID][i] =
faceToBreakTraction;
if(cohesivePatchUPtr)
if ((n0 & faceToBreakNormal) > SMALL)
{
cohesivePatchUPtr->traction()[i] = faceToBreakTraction;
traction.boundaryField()[cohesivePatchID][i] =
faceToBreakTraction;
traction.oldTime().boundaryField()[cohesivePatchID][i] =
faceToBreakTraction;
if(cohesivePatchUPtr)
{
cohesivePatchUPtr->traction()[i] = faceToBreakTraction;
}
else
{
cohesivePatchUFixedModePtr->traction()[i] =
faceToBreakTraction;
cohesivePatchUFixedModePtr->initiationTraction()[i] =
faceToBreakTraction;
}
}
else
{
cohesivePatchUFixedModePtr->traction()[i] =
faceToBreakTraction;
cohesivePatchUFixedModePtr->initiationTraction()[i] =
faceToBreakTraction;
}
}
else
{
traction.boundaryField()[cohesivePatchID][i] =
-faceToBreakTraction;
traction.oldTime().boundaryField()[cohesivePatchID][i] =
-faceToBreakTraction;
//cohesivePatchU.traction()[i] = -faceToBreakTraction;
if(cohesivePatchUPtr)
{
cohesivePatchUPtr->traction()[i] = -faceToBreakTraction;
}
else
{
cohesivePatchUFixedModePtr->traction()[i] =
traction.boundaryField()[cohesivePatchID][i] =
-faceToBreakTraction;
traction.oldTime().boundaryField()[cohesivePatchID][i] =
-faceToBreakTraction;
cohesivePatchUFixedModePtr->initiationTraction()[i] =
-faceToBreakTraction;
//cohesivePatchU.traction()[i] = -faceToBreakTraction;
if(cohesivePatchUPtr)
{
cohesivePatchUPtr->traction()[i] = -faceToBreakTraction;
}
else
{
cohesivePatchUFixedModePtr->traction()[i] =
-faceToBreakTraction;
cohesivePatchUFixedModePtr->initiationTraction()[i] =
-faceToBreakTraction;
}
}
}
}
}
// hmmnn we only need a reference for very small groups of cells
// turn off for now
//# include "updateReference.H"
// hmmnn we only need a reference for very small groups of cells
// turn off for now
//# include "updateReference.H"
}
}

View file

@ -4,20 +4,21 @@
forAll(U.boundaryField(), patchI)
{
// philipc - this used to set a reference on
// processors which did not have a patch that fixesValue
// so processor in the centre of the domain all had
// a referece set causing stress peaks and resulting
// in an incorrect solution
// so a quick fix is to not set a reference on regions
// with a processor boundary
//if (U.boundaryField()[patchI].fixesValue())
if (
U.boundaryField()[patchI].fixesValue()
||
mesh.boundaryMesh()[patchI].type()
== processorPolyPatch::typeName
)
// philipc - this used to set a reference on
// processors which did not have a patch that fixesValue
// so processor in the centre of the domain all had
// a referece set causing stress peaks and resulting
// in an incorrect solution
// so a quick fix is to not set a reference on regions
// with a processor boundary
//if (U.boundaryField()[patchI].fixesValue())
if
(
U.boundaryField()[patchI].fixesValue()
||
mesh.boundaryMesh()[patchI].type()
== processorPolyPatch::typeName
)
{
const unallocLabelList& curFaceCells =
mesh.boundary()[patchI].faceCells();

View file

@ -85,62 +85,62 @@ if (runTime.outputTime() || topoChange)
//- cohesive damage and cracking, and GII and GII
volScalarField damageAndCracks
(
IOobject
(
"damageAndCracks",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0),
calculatedFvPatchVectorField::typeName
);
(
IOobject
(
"damageAndCracks",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0),
calculatedFvPatchVectorField::typeName
);
volScalarField GI
(
IOobject
(
"GI",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0),
calculatedFvPatchVectorField::typeName
);
(
IOobject
(
"GI",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0),
calculatedFvPatchVectorField::typeName
);
volScalarField GII
(
IOobject
(
"GII",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0),
calculatedFvPatchVectorField::typeName
);
(
IOobject
(
"GII",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0),
calculatedFvPatchVectorField::typeName
);
forAll(U.boundaryField(), patchi)
{
// if(U.boundaryField()[patchi].type() == cohesiveLawMultiMatFvPatchVectorField::typeName)
if(U.boundaryField()[patchi].type() == solidCohesiveFvPatchVectorField::typeName)
{
// cohesiveLawMultiMatFvPatchVectorField& Upatch =
// refCast<cohesiveLawMultiMatFvPatchVectorField>(U.boundaryField()[patchi]);
solidCohesiveFvPatchVectorField& Upatch =
refCast<solidCohesiveFvPatchVectorField>(U.boundaryField()[patchi]);
{
// if(U.boundaryField()[patchi].type() == cohesiveLawMultiMatFvPatchVectorField::typeName)
if(U.boundaryField()[patchi].type() == solidCohesiveFvPatchVectorField::typeName)
{
// cohesiveLawMultiMatFvPatchVectorField& Upatch =
// refCast<cohesiveLawMultiMatFvPatchVectorField>(U.boundaryField()[patchi]);
solidCohesiveFvPatchVectorField& Upatch =
refCast<solidCohesiveFvPatchVectorField>(U.boundaryField()[patchi]);
GI.boundaryField()[patchi] = Upatch.GI();
GII.boundaryField()[patchi] = Upatch.GII();
damageAndCracks.boundaryField()[patchi] = Upatch.crackingAndDamage();
}
}
GI.boundaryField()[patchi] = Upatch.GI();
GII.boundaryField()[patchi] = Upatch.GII();
damageAndCracks.boundaryField()[patchi] = Upatch.crackingAndDamage();
}
}
volScalarField GTotal("GTotal", GI + GII);
GTotal.write();

View file

@ -1,19 +1,19 @@
//- write force displacement to file
if(historyPatchID != -1)
{
{
Info << "Found patch "<<historyPatchName<<", writing y force and displacement to file"
<< endl;
<< endl;
//- for small strain or moving mesh
//- for small strain or moving mesh
vector force = gSum(mesh.boundary()[historyPatchID].Sf() & sigma.boundaryField()[historyPatchID]);
vector avDisp = gAverage(U.boundaryField()[historyPatchID]);
//- write to file
if(Pstream::master())
{
OFstream& forceDispFile = *filePtr;
forceDispFile << avDisp.x() << " " << avDisp.y() << " " << avDisp.z() << " "
<< force.x() << " " << force.y() << " " << force.z() << endl;
}
}
//- write to file
if(Pstream::master())
{
OFstream& forceDispFile = *filePtr;
forceDispFile << avDisp.x() << " " << avDisp.y() << " " << avDisp.z() << " "
<< force.x() << " " << force.y() << " " << force.z() << endl;
}
}

View file

@ -1,27 +1,35 @@
if(rheology.planeStress())
{
{
//- add higher order terms
volScalarField higherTerms = -0.5*volTensorField(gradDU&gradDU.T()).component(tensor::ZZ);
forAll(gradDU.internalField(), celli)
{
gradDU.internalField()[celli][tensor::ZZ] =
((-C.internalField()[celli][symmTensor4thOrder::XXZZ]*DEpsilon.internalField()[celli][symmTensor::XX]
- C.internalField()[celli][symmTensor4thOrder::YYZZ]*DEpsilon.internalField()[celli][symmTensor::YY])
/
C.internalField()[celli][symmTensor4thOrder::ZZZZ])
-higherTerms.internalField()[celli];
}
{
gradDU.internalField()[celli][tensor::ZZ] =
(
(-C.internalField()[celli][symmTensor4thOrder::XXZZ]*DEpsilon.internalField()[celli][symmTensor::XX]
- C.internalField()[celli][symmTensor4thOrder::YYZZ]*DEpsilon.internalField()[celli][symmTensor::YY]
)
/
C.internalField()[celli][symmTensor4thOrder::ZZZZ])
- higherTerms.internalField()[celli];
}
forAll(gradDU.boundaryField(), patchi)
{
forAll(gradDU.boundaryField()[patchi], facei)
{
gradDU.boundaryField()[patchi][facei][tensor::ZZ] =
((-C.boundaryField()[patchi][facei][symmTensor4thOrder::XXZZ]*DEpsilon.boundaryField()[patchi][facei][symmTensor::XX]
- C.boundaryField()[patchi][facei][symmTensor4thOrder::YYZZ]*DEpsilon.boundaryField()[patchi][facei][symmTensor::YY])
/
C.boundaryField()[patchi][facei][symmTensor4thOrder::ZZZZ])
- higherTerms.boundaryField()[patchi][facei];
}
}
}
{
forAll(gradDU.boundaryField()[patchi], facei)
{
gradDU.boundaryField()[patchi][facei][tensor::ZZ] =
(
(
- C.boundaryField()[patchi][facei][symmTensor4thOrder::XXZZ]*
DEpsilon.boundaryField()[patchi][facei][symmTensor::XX]
- C.boundaryField()[patchi][facei][symmTensor4thOrder::YYZZ]*
DEpsilon.boundaryField()[patchi][facei][symmTensor::YY]
)
/
C.boundaryField()[patchi][facei][symmTensor4thOrder::ZZZZ]
)
- higherTerms.boundaryField()[patchi][facei];
}
}
}

View file

@ -29,6 +29,7 @@
dimensionedVector("zero", dimLength, vector::zero)
);
Info << "Reading accumulated strain field epsilon\n" << endl;
volSymmTensorField epsilon
(
IOobject
@ -57,6 +58,7 @@
dimensionedSymmTensor("zero", dimless, symmTensor::zero)
);
Info << "Reading accumulated stress field sigma\n" << endl;
volSymmTensorField sigma
(
IOobject
@ -72,6 +74,7 @@
);
Info << "Reading incremental stress field DSigma\n" << endl;
volSymmTensorField DSigma
(
IOobject
@ -86,16 +89,16 @@
dimensionedSymmTensor("zero", dimForce/dimArea, symmTensor::zero)
);
//- material properties
constitutiveModel rheology(sigma, DU);
volSymmTensor4thOrderField C = rheology.C();
volDiagTensorField K = rheology.K();
//surfaceSymmTensor4thOrderField Cf = fvc::interpolate(C);
//surfaceDiagTensorField Kf = fvc::interpolate(K);
//- material properties
constitutiveModel rheology(sigma, DU);
volSymmTensor4thOrderField C = rheology.C();
volDiagTensorField K = rheology.K();
//surfaceSymmTensor4thOrderField Cf = fvc::interpolate(C);
//surfaceDiagTensorField Kf = fvc::interpolate(K);
surfaceVectorField n = mesh.Sf()/mesh.magSf();
surfaceVectorField n = mesh.Sf()/mesh.magSf();
//volScalarField rho = rheology.rho();
//volScalarField rho = rheology.rho();
volScalarField rho
(
IOobject
@ -109,7 +112,7 @@
rheology.rho()
);
// if(rheology.planeStress())
// {
// Info << nl << "Plane stress is set to yes -> the zz stress will be zero" << nl << endl;
// }
// if(rheology.planeStress())
// {
// Info << nl << "Plane stress is set to yes -> the zz stress will be zero" << nl << endl;
// }

View file

@ -62,123 +62,123 @@ Author
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
Info<< "\nStarting time loop\n" << endl;
for (runTime++; !runTime.end(); runTime++)
while(runTime.loop())
{
Info<< "Time: " << runTime.timeName() << nl << endl;
Info<< "Time = " << runTime.timeName() << nl << endl;
# include "readSolidMechanicsControls.H"
# include "readSolidMechanicsControls.H"
int iCorr = 0;
lduMatrix::solverPerformance solverPerf;
scalar initialResidual = 1.0;
lduMatrix::debug = 0;
int iCorr = 0;
lduMatrix::solverPerformance solverPerf;
scalar initialResidual = 1.0;
lduMatrix::debug = 0;
//- div(sigmaOld) should be zero but I will include
//- it to make sure errors don't accumulate
volVectorField* oldErrorPtr = NULL;
if (ensureTotalEquilibrium)
{
oldErrorPtr = new volVectorField
(
fvc::d2dt2(rho.oldTime(), U.oldTime())
- fvc::div(sigma)
);
}
//- div(sigmaOld) should be zero but I will include
//- it to make sure errors don't accumulate
volVectorField* oldErrorPtr = NULL;
if (ensureTotalEquilibrium)
{
oldErrorPtr = new volVectorField
(
fvc::d2dt2(rho.oldTime(), U.oldTime())
- fvc::div(sigma)
);
}
do
{
DU.storePrevIter();
do
{
DU.storePrevIter();
//- Updated lagrangian momentum equation
fvVectorMatrix DUEqn
(
fvm::d2dt2(rho, DU)
+ fvc::d2dt2(rho, U)
==
fvm::laplacian(K, DU, "laplacian(K,DU)")
+ fvc::div(
DSigma
- (K & gradDU)
+ ( (sigma + DSigma) & gradDU ),
"div(sigma)"
)
//- fvc::laplacian(K, DU)
);
//- Updated lagrangian momentum equation
fvVectorMatrix DUEqn
(
fvm::d2dt2(rho, DU)
+ fvc::d2dt2(rho, U)
==
fvm::laplacian(K, DU, "laplacian(K,DU)")
+ fvc::div
(
DSigma
- (K & gradDU)
+ ( (sigma + DSigma) & gradDU ),
"div(sigma)"
)
//- fvc::laplacian(K, DU)
);
if (ensureTotalEquilibrium)
{
//- to stop accumulation of errors
DUEqn += *oldErrorPtr;
}
if (ensureTotalEquilibrium)
{
//- to stop accumulation of errors
DUEqn += *oldErrorPtr;
}
solverPerf = DUEqn.solve();
solverPerf = DUEqn.solve();
if (iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
}
if (iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
}
DU.relax();
DU.relax();
gradDU = fvc::grad(DU);
gradDU = fvc::grad(DU);
//- for 2-D plane stress simulations, the zz component of gradDU
//- ensures sigma.zz() is zero
//- it is assumed that z is the empty direction
//# include "checkPlaneStress.H"
//- for 2-D plane stress simulations, the zz component of gradDU
//- ensures sigma.zz() is zero
//- it is assumed that z is the empty direction
//# include "checkPlaneStress.H"
//- sigma needs to be calculated inside the momentum loop as
//- it is used in the momentum equation
DEpsilon = symm(gradDU) + 0.5*symm(gradDU & gradDU.T());
DSigma = C && DEpsilon;
//- sigma needs to be calculated inside the momentum loop as
//- it is used in the momentum equation
DEpsilon = symm(gradDU) + 0.5*symm(gradDU & gradDU.T());
DSigma = C && DEpsilon;
if (iCorr % infoFrequency == 0)
{
Info << "\tTime " << runTime.value()
<< ", Corr " << iCorr
<< ", Solving for " << DU.name()
<< " using " << solverPerf.solverName()
<< ", res = " << solverPerf.initialResidual()
//<< ", rel res = " << relativeResidual
<< ", inner iters " << solverPerf.nIterations() << endl;
}
}
while
(
solverPerf.initialResidual() > convergenceTolerance
&&
++iCorr < nCorr
);
if (iCorr % infoFrequency == 0)
{
Info<< "\tTime " << runTime.value()
<< ", Corr " << iCorr
<< ", Solving for " << DU.name()
<< " using " << solverPerf.solverName()
<< ", res = " << solverPerf.initialResidual()
//<< ", rel res = " << relativeResidual
<< ", inner iters " << solverPerf.nIterations() << endl;
}
}
while
(
solverPerf.initialResidual() > convergenceTolerance
&& ++iCorr < nCorr
);
Info << nl << "Time " << runTime.value() << ", Solving for " << DU.name()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", No outer iterations " << iCorr
<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< endl;
Info<< nl << "Time " << runTime.value() << ", Solving for " << DU.name()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", No outer iterations " << iCorr
<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< endl;
# include "moveMeshLeastSquares.H"
# include "rotateFields.H"
# include "writeFields.H"
# include "moveMeshLeastSquares.H"
# include "rotateFields.H"
# include "writeFields.H"
Info<< "ExecutionTime = "
<< runTime.elapsedCpuTime()
<< " s\n\n" << endl;
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s\n\n"
<< endl;
}
Info<< "End\n" << endl;
Info<< "End\n" << endl;
return(0);
return(0);
}

View file

@ -2,7 +2,7 @@
//- move mesh
//--------------------------------------------------//
// if(min(J.internalField()) > 0)
{
{
Info << "Moving mesh using least squares interpolation" << endl;
leastSquaresVolPointInterpolation pointInterpolation(mesh);
@ -11,43 +11,42 @@
pointMesh pMesh(mesh);
wordList types
(
pMesh.boundary().size(),
calculatedFvPatchVectorField::typeName
);
(
pMesh.boundary().size(),
calculatedFvPatchVectorField::typeName
);
pointVectorField pointDU
(
IOobject
(
"pointDU",
runTime.timeName(),
mesh
(
IOobject
(
"pointDU",
runTime.timeName(),
mesh
),
pMesh,
dimensionedVector("zero", dimLength, vector::zero),
types
);
pMesh,
dimensionedVector("zero", dimLength, vector::zero),
types
);
pointInterpolation.interpolate(DU, pointDU);
const vectorField& pointDUI =
pointDU.internalField();
const vectorField& pointDUI = pointDU.internalField();
//- Move mesh
vectorField newPoints = mesh.allPoints();
forAll (pointDUI, pointI)
{
{
newPoints[pointI] += pointDUI[pointI];
}
}
twoDPointCorrector twoDCorrector(mesh);
twoDCorrector.correctPoints(newPoints);
mesh.movePoints(newPoints);
mesh.V00();
mesh.moving(false);
}
}
// else
// {
// FatalErrorIn(args.executable())

View file

@ -2,47 +2,47 @@
//- rotate fields
//--------------------------------------------------//
{
Info << "Rotating fields" << endl;
Info << "Rotating fields" << endl;
volTensorField F = I + gradDU;
volTensorField F = I + gradDU;
U += DU;
U += DU;
epsilon += DEpsilon;
epsilon += DEpsilon;
sigma += DSigma;
sigma += DSigma;
volTensorField Finv = inv(F);
volTensorField Finv = inv(F);
volScalarField J = det(F);
if(min(J.internalField()) < 0)
volScalarField J = det(F);
if(min(J.internalField()) < 0)
{
FatalErrorIn(args.executable())
<< "Negative Jacobian - a cell volume has become negative!"
<< exit(FatalError);
FatalErrorIn(args.executable())
<< "Negative Jacobian - a cell volume has become negative!"
<< exit(FatalError);
}
rho = rho/J;
rho = rho/J;
n = mesh.Sf()/mesh.magSf();
n = mesh.Sf()/mesh.magSf();
//- rotate strain
//epsilon = symm(Finv & epsilon & Finv.T());
epsilon = transform(Finv, epsilon);
//- rotate strain
//epsilon = symm(Finv & epsilon & Finv.T());
epsilon = transform(Finv, epsilon);
//- rotate stress
//sigma = 1/J * symm(F.T() & sigma & F);
sigma = (1/J) * transform(F.T(), sigma);
//- rotate stress
//sigma = 1/J * symm(F.T() & sigma & F);
sigma = (1/J) * transform(F.T(), sigma);
//- rotate elastic constitutive tensor
C = transform(F.T(), C);
//- rotate elastic constitutive tensor
C = transform(F.T(), C);
// - update implicit stiffness tensor
forAll(K, celli)
// - update implicit stiffness tensor
forAll(K, celli)
{
K[celli].xx() = C[celli].xxxx();
K[celli].yy() = C[celli].yyyy();
K[celli].zz() = C[celli].zzzz();
K[celli].xx() = C[celli].xxxx();
K[celli].yy() = C[celli].yyyy();
K[celli].zz() = C[celli].zzzz();
}
K.correctBoundaryConditions();
K.correctBoundaryConditions();
}

View file

@ -1,61 +1,59 @@
if (runTime.outputTime())
{
{
//C.write();
volScalarField epsilonEq
(
IOobject
(
"epsilonEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((2.0/3.0)*magSqr(dev(epsilon)))
);
(
IOobject
(
"epsilonEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((2.0/3.0)*magSqr(dev(epsilon)))
);
Info<< "Max epsilonEq = " << max(epsilonEq).value()
<< endl;
Info<< "Max epsilonEq = " << max(epsilonEq).value() << endl;
volScalarField sigmaEq
(
IOobject
(
"sigmaEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((3.0/2.0)*magSqr(dev(sigma)))
);
(
IOobject
(
"sigmaEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((3.0/2.0)*magSqr(dev(sigma)))
);
Info<< "Max sigmaEq = " << max(sigmaEq).value()
<< endl;
Info<< "Max sigmaEq = " << max(sigmaEq).value() << endl;
// volVectorField traction
// (
// IOobject
// (
// "traction",
// runTime.timeName(),
// mesh,
// IOobject::NO_READ,
// IOobject::AUTO_WRITE
// ),
// volVectorField traction
// (
// IOobject
// (
// "traction",
// runTime.timeName(),
// mesh,
// dimensionedVector("zero", dimForce/dimArea, vector::zero)
// );
// forAll(mesh.boundary(), patchi)
// {
// IOobject::NO_READ,
// IOobject::AUTO_WRITE
// ),
// mesh,
// dimensionedVector("zero", dimForce/dimArea, vector::zero)
// );
// forAll(mesh.boundary(), patchi)
// {
// traction.boundaryField()[patchi] =
// n.boundaryField()[patchi] & sigma.boundaryField()[patchi];
// }
// n.boundaryField()[patchi] & sigma.boundaryField()[patchi];
// }
// //- patch forces
// forAll(mesh.boundary(), patchi)
// {
// {
// Info << "Patch " << mesh.boundary()[patchi].name() << endl;
// vectorField totalForce = mesh.Sf().boundaryField()[patchi] & sigma.boundaryField()[patchi];
// vector force = sum( totalForce );
@ -66,7 +64,7 @@ if (runTime.outputTime())
// Info << "\tnormal force is " << normalForce << " N" << endl;
// scalar shearForce = mag(sum( (I - sqr(n.boundaryField()[patchi])) & totalForce ));
// Info << "\tshear force is " << shearForce << " N" << endl;
// }
// }
runTime.write();
}
}

View file

@ -1,32 +1,29 @@
if(divSigmaExpMethod == "standard")
{
{
//- calculating the full gradient has good convergence and no high freq oscillations
divSigmaExp =
fvc::div(
(C && symm(gradU))
- (K & gradU),
"div(sigma)"
);
}
else if(divSigmaExpMethod == "surface")
{
//- this form seems to have the best convergence
divSigmaExp =
fvc::div(mesh.magSf()*
divSigmaExp = fvc::div((C && symm(gradU)) - (K & gradU), "div(sigma)");
}
else if(divSigmaExpMethod == "surface")
{
//- this form seems to have the best convergence
divSigmaExp = fvc::div
(
mesh.magSf()*
(
(n&(Cf && fvc::interpolate(symm(gradU))))
- (n&(Kf & fvc::interpolate(gradU)))
)
);
}
else if(divSigmaExpMethod == "laplacian")
{
//- can cause high freq oscillations and slow convergence
divSigmaExp =
fvc::div(C && symm(epsilon), "div(sigma)")
- fvc::laplacian(K,U, "laplacian(K,U)");
}
else
{
FatalError << "divSigmaExp method " << divSigmaExpMethod << " not found!" << endl;
}
(n & (Cf && fvc::interpolate(symm(gradU))))
- (n & (Kf & fvc::interpolate(gradU)))
)
);
}
else if(divSigmaExpMethod == "laplacian")
{
//- can cause high freq oscillations and slow convergence
divSigmaExp =
fvc::div(C && symm(epsilon), "div(sigma)")
- fvc::laplacian(K, U, "laplacian(K, U)");
}
else
{
FatalErrorIn(args.executable())
<< "divSigmaExp method " << divSigmaExpMethod << " not found!" << endl;
}

View file

@ -1,14 +1,14 @@
OFstream * filePtr(NULL);
OFstream* filePtr(NULL);
word historyPatchName(mesh.solutionDict().subDict("solidMechanics").lookup("historyPatch"));
label historyPatchID = mesh.boundaryMesh().findPatchID(historyPatchName);
if(historyPatchID == -1)
{
{
Warning << "history patch " << historyPatchName
<< " not found. Force-displacement will not be written"
<< endl;
}
else if(Pstream::master())
{
}
else if(Pstream::master())
{
Info << "Force-displacement for patch " << historyPatchName
<< " will be written to forceDisp.dat"
<< endl;
@ -17,4 +17,4 @@ if(historyPatchID == -1)
filePtr = new OFstream(hisDirName/historyPatchName+"forceDisp.dat");
OFstream& forceDispFile = *filePtr;
forceDispFile << "#Disp(mm)\tForce(N)" << endl;
}
}

View file

@ -48,103 +48,102 @@ Author
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
# include "createHistory.H"
# include "readDivSigmaExpMethod.H"
# include "createSolidInterfaceOrthotropic.H"
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
# include "createHistory.H"
# include "readDivSigmaExpMethod.H"
# include "createSolidInterfaceOrthotropic.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
Info<< "\nStarting time loop\n" << endl;
for (runTime++; !runTime.end(); runTime++)
while(runTime.loop())
{
Info<< "Time: " << runTime.timeName() << nl << endl;
Info<< "Time = " << runTime.timeName() << nl << endl;
# include "readSolidMechanicsControls.H"
# include "readSolidMechanicsControls.H"
int iCorr = 0;
lduMatrix::solverPerformance solverPerf;
scalar initialResidual = 1.0;
scalar relativeResidual = 1.0;
lduMatrix::debug = 0;
int iCorr = 0;
lduMatrix::solverPerformance solverPerf;
scalar initialResidual = 1.0;
scalar relativeResidual = 1.0;
lduMatrix::debug = 0;
do
{
U.storePrevIter();
do
{
U.storePrevIter();
# include "calculateDivSigmaExp.H"
# include "calculateDivSigmaExp.H"
//- Linear momentum equation
fvVectorMatrix UEqn
(
rho*fvm::d2dt2(U)
==
fvm::laplacian(Kf, U, "laplacian(K,U)")
+ divSigmaExp
);
if (solidInterfaceCorr)
{
solidInterfacePtr->correct(UEqn);
}
solverPerf = UEqn.solve();
if (iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
}
U.relax();
gradU = fvc::grad(U); // use leastSquaresSolidInterface
//# include "setPlaneStressGradU.H"
# include "calculateRelativeResidual.H"
if (iCorr % infoFrequency == 0)
{
Info << "\tTime " << runTime.value()
<< ", Corr " << iCorr
<< ", Solving for " << U.name()
<< " using " << solverPerf.solverName()
<< ", res = " << solverPerf.initialResidual()
<< ", rel res = " << relativeResidual
<< ", inner iters " << solverPerf.nIterations() << endl;
}
}
while
(
solverPerf.initialResidual() > convergenceTolerance
&&
++iCorr < nCorr
//- Linear momentum equation
fvVectorMatrix UEqn
(
rho*fvm::d2dt2(U)
==
fvm::laplacian(Kf, U, "laplacian(K,U)")
+ divSigmaExp
);
Info<< nl << "Time " << runTime.value() << ", Solving for " << U.name()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", No outer iterations " << iCorr
<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< endl;
if (solidInterfaceCorr)
{
solidInterfacePtr->correct(UEqn);
}
# include "calculateEpsilonSigma.H"
# include "writeFields.H"
# include "writeHistory.H"
solverPerf = UEqn.solve();
Info<< "ExecutionTime = "
<< runTime.elapsedCpuTime()
<< " s\n\n" << endl;
if (iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
}
U.relax();
gradU = fvc::grad(U); // use leastSquaresSolidInterface
//# include "setPlaneStressGradU.H"
# include "calculateRelativeResidual.H"
if (iCorr % infoFrequency == 0)
{
Info<< "\tTime " << runTime.value()
<< ", Corr " << iCorr
<< ", Solving for " << U.name()
<< " using " << solverPerf.solverName()
<< ", res = " << solverPerf.initialResidual()
<< ", rel res = " << relativeResidual
<< ", inner iters " << solverPerf.nIterations() << endl;
}
}
while
(
solverPerf.initialResidual() > convergenceTolerance
&& ++iCorr < nCorr
);
Info<< nl << "Time " << runTime.value() << ", Solving for " << U.name()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", No outer iterations " << iCorr
<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< endl;
# include "calculateEpsilonSigma.H"
# include "writeFields.H"
# include "writeHistory.H"
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s\n\n"
<< endl;
}
Info<< "End\n" << endl;
Info<< "End\n" << endl;
return(0);
return(0);
}

View file

@ -2,8 +2,8 @@
word divSigmaExpMethod(mesh.solutionDict().subDict("solidMechanics").lookup("divSigmaExp"));
Info << "Calculation of divSigmaExp Method: " << divSigmaExpMethod << endl;
if(divSigmaExpMethod != "standard" && divSigmaExpMethod != "surface" && divSigmaExpMethod != "laplacian")
{
{
FatalError << "divSigmaExp method " << divSigmaExpMethod << " not found!" << nl
<< "valid methods are:\nstandard\nsurface\nlaplacian"
<< exit(FatalError);
}
<< "valid methods are:\nstandard\nsurface\nlaplacian"
<< exit(FatalError);
}

View file

@ -1,13 +1,15 @@
//- set gradU.zz() for plane stress
if(rheology.planeStress())
{
forAll(gradU.internalField(), celli)
{
gradU.internalField()[celli].zz() =
(-C.internalField()[celli].xxzz()*epsilon.internalField()[celli].xx()
- C.internalField()[celli].yyzz()*epsilon.internalField()[celli].yy())
//- set gradU.zz() for plane stress
if(rheology.planeStress())
{
forAll(gradU.internalField(), celli)
{
gradU.internalField()[celli].zz() =
(
- C.internalField()[celli].xxzz()*epsilon.internalField()[celli].xx()
- C.internalField()[celli].yyzz()*epsilon.internalField()[celli].yy()
)
/
C.internalField()[celli].zzzz();
}
gradU.correctBoundaryConditions();
}
}
gradU.correctBoundaryConditions();
}

View file

@ -1,38 +1,36 @@
if (runTime.outputTime())
{
{
//K.write();
volScalarField epsilonEq
(
IOobject
(
"epsilonEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((2.0/3.0)*magSqr(dev(epsilon)))
);
(
IOobject
(
"epsilonEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((2.0/3.0)*magSqr(dev(epsilon)))
);
Info<< "Max epsilonEq = " << max(epsilonEq).value()
<< endl;
Info<< "Max epsilonEq = " << max(epsilonEq).value() << endl;
volScalarField sigmaEq
(
IOobject
(
"sigmaEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((3.0/2.0)*magSqr(dev(sigma)))
);
(
IOobject
(
"sigmaEq",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt((3.0/2.0)*magSqr(dev(sigma)))
);
Info<< "Max sigmaEq = " << max(sigmaEq).value()
<< endl;
Info<< "Max sigmaEq = " << max(sigmaEq).value() << endl;
runTime.write();
}
}

View file

@ -1,19 +1,19 @@
//- write force displacement to file
if(historyPatchID != -1)
{
{
Info << "Writing disp and force of patch "<<historyPatchName<<" to file"
<< endl;
<< endl;
//- for small strain or moving mesh
//- for small strain or moving mesh
vector force = gSum(mesh.boundary()[historyPatchID].Sf() & sigma.boundaryField()[historyPatchID]);
vector avDisp = gAverage(U.boundaryField()[historyPatchID]);
//- write to file
if(Pstream::master())
{
OFstream& forceDispFile = *filePtr;
forceDispFile << avDisp.x() << " " << avDisp.y() << " " << avDisp.z() << " "
<< force.x() << " " << force.y() << " " << force.z() << endl;
}
}
{
OFstream& forceDispFile = *filePtr;
forceDispFile << avDisp.x() << " " << avDisp.y() << " " << avDisp.z() << " "
<< force.x() << " " << force.y() << " " << force.z() << endl;
}
}

View file

@ -11,26 +11,24 @@ aitkenDelta = (DU - DU.prevIter()) / aitkenInitialRes;
// update relaxation factor
if(iCorr == 0)
{
{
aitkenTheta = 0.1;
}
else
{
vectorField b = aitkenDelta.internalField() - aitkenDelta.prevIter().internalField();
//scalar sumMagB = gSum(mag(b));
scalar sumMagB = gSum(magSqr(b));
if(sumMagB < SMALL)
{
//Warning << "Aitken under-relaxation: denominator less then SMALL"
// << endl;
sumMagB += SMALL;
}
}
else
{
vectorField b = aitkenDelta.internalField() - aitkenDelta.prevIter().internalField();
//scalar sumMagB = gSum(mag(b));
scalar sumMagB = gSum(magSqr(b));
if(sumMagB < SMALL)
{
//Warning << "Aitken under-relaxation: denominator less then SMALL"
// << endl;
sumMagB += SMALL;
}
aitkenTheta = -aitkenTheta*
gSum(aitkenDelta.prevIter().internalField() & b)
/
sumMagB;
}
aitkenTheta = -aitkenTheta*
gSum(aitkenDelta.prevIter().internalField() & b)/sumMagB;
}
// correction to the latest DU
DU += aitkenTheta*aitkenDelta*aitkenInitialRes;

View file

@ -2,9 +2,7 @@ if(divDSigmaExpMethod == "standard")
{
divDSigmaExp = fvc::div
(
(mu*gradDU.T())
+ (lambda*(I*tr(gradDU)))
- ((mu + lambda)*gradDU),
mu*gradDU.T() + lambda*(I*tr(gradDU)) - (mu + lambda)*gradDU,
"div(sigma)"
);
}
@ -21,11 +19,11 @@ else if(divDSigmaExpMethod == "surface")
);
// divDSigmaExp = fvc::div
// (
// (
// muf*(mesh.Sf() & fvc::interpolate(gradDU.T()))
// + lambdaf*(mesh.Sf() & I*fvc::interpolate(tr(gradDU)))
// - (muf + lambdaf)*(mesh.Sf() & fvc::interpolate(gradDU))
// );
// + lambdaf*(mesh.Sf() & I*fvc::interpolate(tr(gradDU)))
// - (muf + lambdaf)*(mesh.Sf() & fvc::interpolate(gradDU))
// );
}
else if(divDSigmaExpMethod == "decompose")
{
@ -42,25 +40,20 @@ else if(divDSigmaExpMethod == "decompose")
);
// divDSigmaExp = fvc::div
// (
// mesh.magSf()
// *(
// (
// mesh.magSf()*
// (
// - (muf + lambdaf)*(fvc::snGrad(DU)&(I - n*n))
// + lambdaf*tr(shearGradDU&(I - n*n))*n
// + muf*(shearGradDU&n)
// )
// );
// )
// );
}
else if(divDSigmaExpMethod == "laplacian")
{
divDSigmaExp =
- fvc::laplacian(mu + lambda, DU, "laplacian(DDU,DU)")
+ fvc::div
(
mu*gradDU.T()
+ lambda*(I*tr(gradDU)),
"div(sigma)"
);
+ fvc::div(mu*gradDU.T() + lambda*(I*tr(gradDU)), "div(sigma)");
}
else
{

View file

@ -6,17 +6,17 @@
// volVectorField divThirdOrderTerm
// (
// IOobject
// (
// "divThirdOrderTerm",
// runTime.timeName(),
// mesh,
// IOobject::NO_READ,
// IOobject::NO_WRITE
// ),
// mesh,
// dimensionedVector("zero", dimForce/dimVolume, vector::zero)
// );
// IOobject
// (
// "divThirdOrderTerm",
// runTime.timeName(),
// mesh,
// IOobject::NO_READ,
// IOobject::NO_WRITE
// ),
// mesh,
// dimensionedVector("zero", dimForce/dimVolume, vector::zero)
// );
// average gradDU of neighbouring cell centres
// interpolation scheme should be midPoint
@ -25,17 +25,17 @@ surfaceTensorField averageGradDU("averageGradDU", fvc::interpolate(gradDU, "aver
// average face gradDU extrapolated from neighbouring cell centres
surfaceTensorField extrapGradDU
(
IOobject
(
"extrapGradDU",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedTensor("zero", dimless, tensor::zero)
);
IOobject
(
"extrapGradDU",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedTensor("zero", dimless, tensor::zero)
);
volVectorField gradGradDUcompXX = fvc::grad(gradDU.component(tensor::XX), "gradGradDU");
volVectorField gradGradDUcompXY = fvc::grad(gradDU.component(tensor::XY), "gradGradDU");
@ -86,180 +86,181 @@ volScalarField gradGradDUZZZ = gradGradDUcompZZ.component(vector::Z);
forAll(extrapGradDU.internalField(), facei)
{
const label own = mesh.owner()[facei];
const label nei = mesh.neighbour()[facei];
const vector deltaOwn = mesh.Cf()[facei] - mesh.C()[own];
const vector deltaNei = mesh.Cf()[facei] - mesh.C()[nei];
const tensor& gradDUOwn = gradDU.internalField()[own];
const tensor& gradDUNei = gradDU.internalField()[nei];
const label own = mesh.owner()[facei];
const label nei = mesh.neighbour()[facei];
const vector deltaOwn = mesh.Cf()[facei] - mesh.C()[own];
const vector deltaNei = mesh.Cf()[facei] - mesh.C()[nei];
const tensor& gradDUOwn = gradDU.internalField()[own];
const tensor& gradDUNei = gradDU.internalField()[nei];
// as there is there is no thirdOrderTensor class, we will
// calculate (deltaOwn&gradGradDUOwn) out manually
// tensor deltaOwnDotgradGradDUOwn = tensor::zero;
// tensor deltaNeiDotgradGradDUNei = tensor::zero;
// as there is there is no thirdOrderTensor class, we will
// calculate (deltaOwn&gradGradDUOwn) out manually
// tensor deltaOwnDotgradGradDUOwn = tensor::zero;
// tensor deltaNeiDotgradGradDUNei = tensor::zero;
// deltaOwnDotgradGradDUOwn[tensor::XX] = deltaOwn & gradGradDUcompXX.internalField()[own];
// deltaNeiDotgradGradDUNei[tensor::XX] = deltaNei & gradGradDUcompXX.internalField()[nei];
// deltaOwnDotgradGradDUOwn[tensor::XY] = deltaOwn & gradGradDUcompXY.internalField()[own];
// deltaNeiDotgradGradDUNei[tensor::XY] = deltaNei & gradGradDUcompXY.internalField()[nei];
// deltaOwnDotgradGradDUOwn[tensor::XZ] = deltaOwn & gradGradDUcompXZ.internalField()[own];
// deltaNeiDotgradGradDUNei[tensor::XZ] = deltaNei & gradGradDUcompXZ.internalField()[nei];
// deltaOwnDotgradGradDUOwn[tensor::XX] = deltaOwn & gradGradDUcompXX.internalField()[own];
// deltaNeiDotgradGradDUNei[tensor::XX] = deltaNei & gradGradDUcompXX.internalField()[nei];
// deltaOwnDotgradGradDUOwn[tensor::XY] = deltaOwn & gradGradDUcompXY.internalField()[own];
// deltaNeiDotgradGradDUNei[tensor::XY] = deltaNei & gradGradDUcompXY.internalField()[nei];
// deltaOwnDotgradGradDUOwn[tensor::XZ] = deltaOwn & gradGradDUcompXZ.internalField()[own];
// deltaNeiDotgradGradDUNei[tensor::XZ] = deltaNei & gradGradDUcompXZ.internalField()[nei];
// deltaOwnDotgradGradDUOwn[tensor::YX] = deltaOwn & gradGradDUcompYX.internalField()[own];
// deltaNeiDotgradGradDUNei[tensor::YX] = deltaNei & gradGradDUcompYX.internalField()[nei];
// deltaOwnDotgradGradDUOwn[tensor::YY] = deltaOwn & gradGradDUcompYY.internalField()[own];
// deltaNeiDotgradGradDUNei[tensor::YY] = deltaNei & gradGradDUcompYY.internalField()[nei];
// deltaOwnDotgradGradDUOwn[tensor::YZ] = deltaOwn & gradGradDUcompYZ.internalField()[own];
// deltaNeiDotgradGradDUNei[tensor::YZ] = deltaNei & gradGradDUcompYZ.internalField()[nei];
// deltaOwnDotgradGradDUOwn[tensor::YX] = deltaOwn & gradGradDUcompYX.internalField()[own];
// deltaNeiDotgradGradDUNei[tensor::YX] = deltaNei & gradGradDUcompYX.internalField()[nei];
// deltaOwnDotgradGradDUOwn[tensor::YY] = deltaOwn & gradGradDUcompYY.internalField()[own];
// deltaNeiDotgradGradDUNei[tensor::YY] = deltaNei & gradGradDUcompYY.internalField()[nei];
// deltaOwnDotgradGradDUOwn[tensor::YZ] = deltaOwn & gradGradDUcompYZ.internalField()[own];
// deltaNeiDotgradGradDUNei[tensor::YZ] = deltaNei & gradGradDUcompYZ.internalField()[nei];
// deltaOwnDotgradGradDUOwn[tensor::ZX] = deltaOwn & gradGradDUcompZX.internalField()[own];
// deltaNeiDotgradGradDUNei[tensor::ZX] = deltaNei & gradGradDUcompZX.internalField()[nei];
// deltaOwnDotgradGradDUOwn[tensor::ZY] = deltaOwn & gradGradDUcompZY.internalField()[own];
// deltaNeiDotgradGradDUNei[tensor::ZY] = deltaNei & gradGradDUcompZY.internalField()[nei];
// deltaOwnDotgradGradDUOwn[tensor::ZZ] = deltaOwn & gradGradDUcompZZ.internalField()[own];
// deltaNeiDotgradGradDUNei[tensor::ZZ] = deltaNei & gradGradDUcompZZ.internalField()[nei];
// deltaOwnDotgradGradDUOwn[tensor::ZX] = deltaOwn & gradGradDUcompZX.internalField()[own];
// deltaNeiDotgradGradDUNei[tensor::ZX] = deltaNei & gradGradDUcompZX.internalField()[nei];
// deltaOwnDotgradGradDUOwn[tensor::ZY] = deltaOwn & gradGradDUcompZY.internalField()[own];
// deltaNeiDotgradGradDUNei[tensor::ZY] = deltaNei & gradGradDUcompZY.internalField()[nei];
// deltaOwnDotgradGradDUOwn[tensor::ZZ] = deltaOwn & gradGradDUcompZZ.internalField()[own];
// deltaNeiDotgradGradDUNei[tensor::ZZ] = deltaNei & gradGradDUcompZZ.internalField()[nei];
scalar gradGradDUXXXOwn = gradGradDUXXX.internalField()[own];
scalar gradGradDUXXYOwn = gradGradDUXXY.internalField()[own];
scalar gradGradDUXXZOwn = gradGradDUXXZ.internalField()[own];
scalar gradGradDUXXXOwn = gradGradDUXXX.internalField()[own];
scalar gradGradDUXXYOwn = gradGradDUXXY.internalField()[own];
scalar gradGradDUXXZOwn = gradGradDUXXZ.internalField()[own];
scalar gradGradDUXYXOwn = gradGradDUXYX.internalField()[own];
scalar gradGradDUXYYOwn = gradGradDUXYY.internalField()[own];
scalar gradGradDUXYZOwn = gradGradDUXYZ.internalField()[own];
scalar gradGradDUXYXOwn = gradGradDUXYX.internalField()[own];
scalar gradGradDUXYYOwn = gradGradDUXYY.internalField()[own];
scalar gradGradDUXYZOwn = gradGradDUXYZ.internalField()[own];
scalar gradGradDUXZXOwn = gradGradDUXZX.internalField()[own];
scalar gradGradDUXZYOwn = gradGradDUXZY.internalField()[own];
scalar gradGradDUXZZOwn = gradGradDUXZZ.internalField()[own];
scalar gradGradDUXZXOwn = gradGradDUXZX.internalField()[own];
scalar gradGradDUXZYOwn = gradGradDUXZY.internalField()[own];
scalar gradGradDUXZZOwn = gradGradDUXZZ.internalField()[own];
scalar gradGradDUYXXOwn = gradGradDUYXX.internalField()[own];
scalar gradGradDUYXYOwn = gradGradDUYXY.internalField()[own];
scalar gradGradDUYXZOwn = gradGradDUYXZ.internalField()[own];
scalar gradGradDUYXXOwn = gradGradDUYXX.internalField()[own];
scalar gradGradDUYXYOwn = gradGradDUYXY.internalField()[own];
scalar gradGradDUYXZOwn = gradGradDUYXZ.internalField()[own];
scalar gradGradDUYYXOwn = gradGradDUYYX.internalField()[own];
scalar gradGradDUYYYOwn = gradGradDUYYY.internalField()[own];
scalar gradGradDUYYZOwn = gradGradDUYYZ.internalField()[own];
scalar gradGradDUYYXOwn = gradGradDUYYX.internalField()[own];
scalar gradGradDUYYYOwn = gradGradDUYYY.internalField()[own];
scalar gradGradDUYYZOwn = gradGradDUYYZ.internalField()[own];
scalar gradGradDUYZXOwn = gradGradDUYZX.internalField()[own];
scalar gradGradDUYZYOwn = gradGradDUYZY.internalField()[own];
scalar gradGradDUYZZOwn = gradGradDUYZZ.internalField()[own];
scalar gradGradDUYZXOwn = gradGradDUYZX.internalField()[own];
scalar gradGradDUYZYOwn = gradGradDUYZY.internalField()[own];
scalar gradGradDUYZZOwn = gradGradDUYZZ.internalField()[own];
scalar gradGradDUZXXOwn = gradGradDUZXX.internalField()[own];
scalar gradGradDUZXYOwn = gradGradDUZXY.internalField()[own];
scalar gradGradDUZXZOwn = gradGradDUZXZ.internalField()[own];
scalar gradGradDUZXXOwn = gradGradDUZXX.internalField()[own];
scalar gradGradDUZXYOwn = gradGradDUZXY.internalField()[own];
scalar gradGradDUZXZOwn = gradGradDUZXZ.internalField()[own];
scalar gradGradDUZYXOwn = gradGradDUZYX.internalField()[own];
scalar gradGradDUZYYOwn = gradGradDUZYY.internalField()[own];
scalar gradGradDUZYZOwn = gradGradDUZYZ.internalField()[own];
scalar gradGradDUZYXOwn = gradGradDUZYX.internalField()[own];
scalar gradGradDUZYYOwn = gradGradDUZYY.internalField()[own];
scalar gradGradDUZYZOwn = gradGradDUZYZ.internalField()[own];
scalar gradGradDUZZXOwn = gradGradDUZZX.internalField()[own];
scalar gradGradDUZZYOwn = gradGradDUZZY.internalField()[own];
scalar gradGradDUZZZOwn = gradGradDUZZZ.internalField()[own];
scalar gradGradDUZZXOwn = gradGradDUZZX.internalField()[own];
scalar gradGradDUZZYOwn = gradGradDUZZY.internalField()[own];
scalar gradGradDUZZZOwn = gradGradDUZZZ.internalField()[own];
// nei
scalar gradGradDUXXXNei = gradGradDUXXX.internalField()[nei];
scalar gradGradDUXXYNei = gradGradDUXXY.internalField()[nei];
scalar gradGradDUXXZNei = gradGradDUXXZ.internalField()[nei];
// nei
scalar gradGradDUXXXNei = gradGradDUXXX.internalField()[nei];
scalar gradGradDUXXYNei = gradGradDUXXY.internalField()[nei];
scalar gradGradDUXXZNei = gradGradDUXXZ.internalField()[nei];
scalar gradGradDUXYXNei = gradGradDUXYX.internalField()[nei];
scalar gradGradDUXYYNei = gradGradDUXYY.internalField()[nei];
scalar gradGradDUXYZNei = gradGradDUXYZ.internalField()[nei];
scalar gradGradDUXYXNei = gradGradDUXYX.internalField()[nei];
scalar gradGradDUXYYNei = gradGradDUXYY.internalField()[nei];
scalar gradGradDUXYZNei = gradGradDUXYZ.internalField()[nei];
scalar gradGradDUXZXNei = gradGradDUXZX.internalField()[nei];
scalar gradGradDUXZYNei = gradGradDUXZY.internalField()[nei];
scalar gradGradDUXZZNei = gradGradDUXZZ.internalField()[nei];
scalar gradGradDUXZXNei = gradGradDUXZX.internalField()[nei];
scalar gradGradDUXZYNei = gradGradDUXZY.internalField()[nei];
scalar gradGradDUXZZNei = gradGradDUXZZ.internalField()[nei];
scalar gradGradDUYXXNei = gradGradDUYXX.internalField()[nei];
scalar gradGradDUYXYNei = gradGradDUYXY.internalField()[nei];
scalar gradGradDUYXZNei = gradGradDUYXZ.internalField()[nei];
scalar gradGradDUYXXNei = gradGradDUYXX.internalField()[nei];
scalar gradGradDUYXYNei = gradGradDUYXY.internalField()[nei];
scalar gradGradDUYXZNei = gradGradDUYXZ.internalField()[nei];
scalar gradGradDUYYXNei = gradGradDUYYX.internalField()[nei];
scalar gradGradDUYYYNei = gradGradDUYYY.internalField()[nei];
scalar gradGradDUYYZNei = gradGradDUYYZ.internalField()[nei];
scalar gradGradDUYYXNei = gradGradDUYYX.internalField()[nei];
scalar gradGradDUYYYNei = gradGradDUYYY.internalField()[nei];
scalar gradGradDUYYZNei = gradGradDUYYZ.internalField()[nei];
scalar gradGradDUYZXNei = gradGradDUYZX.internalField()[nei];
scalar gradGradDUYZYNei = gradGradDUYZY.internalField()[nei];
scalar gradGradDUYZZNei = gradGradDUYZZ.internalField()[nei];
scalar gradGradDUYZXNei = gradGradDUYZX.internalField()[nei];
scalar gradGradDUYZYNei = gradGradDUYZY.internalField()[nei];
scalar gradGradDUYZZNei = gradGradDUYZZ.internalField()[nei];
scalar gradGradDUZXXNei = gradGradDUZXX.internalField()[nei];
scalar gradGradDUZXYNei = gradGradDUZXY.internalField()[nei];
scalar gradGradDUZXZNei = gradGradDUZXZ.internalField()[nei];
scalar gradGradDUZXXNei = gradGradDUZXX.internalField()[nei];
scalar gradGradDUZXYNei = gradGradDUZXY.internalField()[nei];
scalar gradGradDUZXZNei = gradGradDUZXZ.internalField()[nei];
scalar gradGradDUZYXNei = gradGradDUZYX.internalField()[nei];
scalar gradGradDUZYYNei = gradGradDUZYY.internalField()[nei];
scalar gradGradDUZYZNei = gradGradDUZYZ.internalField()[nei];
scalar gradGradDUZYXNei = gradGradDUZYX.internalField()[nei];
scalar gradGradDUZYYNei = gradGradDUZYY.internalField()[nei];
scalar gradGradDUZYZNei = gradGradDUZYZ.internalField()[nei];
scalar gradGradDUZZXNei = gradGradDUZZX.internalField()[nei];
scalar gradGradDUZZYNei = gradGradDUZZY.internalField()[nei];
scalar gradGradDUZZZNei = gradGradDUZZZ.internalField()[nei];
scalar gradGradDUZZXNei = gradGradDUZZX.internalField()[nei];
scalar gradGradDUZZYNei = gradGradDUZZY.internalField()[nei];
scalar gradGradDUZZZNei = gradGradDUZZZ.internalField()[nei];
tensor deltaOwnDotgradGradDUOwn =
tensor(
deltaOwn.x()*gradGradDUXXXOwn + deltaOwn.y()*gradGradDUYXXOwn + deltaOwn.z()*gradGradDUZXXOwn,
deltaOwn.x()*gradGradDUXXYOwn + deltaOwn.y()*gradGradDUYXYOwn + deltaOwn.z()*gradGradDUZXYOwn,
deltaOwn.x()*gradGradDUXXZOwn + deltaOwn.y()*gradGradDUYXZOwn + deltaOwn.z()*gradGradDUZXZOwn,
deltaOwn.x()*gradGradDUXYXOwn + deltaOwn.y()*gradGradDUYYXOwn + deltaOwn.z()*gradGradDUZYXOwn,
deltaOwn.x()*gradGradDUXYYOwn + deltaOwn.y()*gradGradDUYYYOwn + deltaOwn.z()*gradGradDUZYYOwn,
deltaOwn.x()*gradGradDUXYZOwn + deltaOwn.y()*gradGradDUYYZOwn + deltaOwn.z()*gradGradDUZYZOwn,
deltaOwn.x()*gradGradDUXZXOwn + deltaOwn.y()*gradGradDUYZXOwn + deltaOwn.z()*gradGradDUZZXOwn,
deltaOwn.x()*gradGradDUXZYOwn + deltaOwn.y()*gradGradDUYZYOwn + deltaOwn.z()*gradGradDUZZYOwn,
deltaOwn.x()*gradGradDUXZZOwn + deltaOwn.y()*gradGradDUYZZOwn + deltaOwn.z()*gradGradDUZZZOwn
);
tensor deltaNeiDotgradGradDUNei =
tensor(
deltaNei.x()*gradGradDUXXXNei + deltaNei.y()*gradGradDUYXXNei + deltaNei.z()*gradGradDUZXXNei,
deltaNei.x()*gradGradDUXXYNei + deltaNei.y()*gradGradDUYXYNei + deltaNei.z()*gradGradDUZXYNei,
deltaNei.x()*gradGradDUXXZNei + deltaNei.y()*gradGradDUYXZNei + deltaNei.z()*gradGradDUZXZNei,
deltaNei.x()*gradGradDUXYXNei + deltaNei.y()*gradGradDUYYXNei + deltaNei.z()*gradGradDUZYXNei,
deltaNei.x()*gradGradDUXYYNei + deltaNei.y()*gradGradDUYYYNei + deltaNei.z()*gradGradDUZYYNei,
deltaNei.x()*gradGradDUXYZNei + deltaNei.y()*gradGradDUYYZNei + deltaNei.z()*gradGradDUZYZNei,
deltaNei.x()*gradGradDUXZXNei + deltaNei.y()*gradGradDUYZXNei + deltaNei.z()*gradGradDUZZXNei,
deltaNei.x()*gradGradDUXZYNei + deltaNei.y()*gradGradDUYZYNei + deltaNei.z()*gradGradDUZZYNei,
deltaNei.x()*gradGradDUXZZNei + deltaNei.y()*gradGradDUYZZNei + deltaNei.z()*gradGradDUZZZNei
);
// get average of extrapolated values
tensor extrapFaceGrad =
0.5*
tensor deltaOwnDotgradGradDUOwn = tensor
(
gradDUOwn + (deltaOwnDotgradGradDUOwn)
+
gradDUNei + (deltaNeiDotgradGradDUNei)
);
deltaOwn.x()*gradGradDUXXXOwn + deltaOwn.y()*gradGradDUYXXOwn + deltaOwn.z()*gradGradDUZXXOwn,
deltaOwn.x()*gradGradDUXXYOwn + deltaOwn.y()*gradGradDUYXYOwn + deltaOwn.z()*gradGradDUZXYOwn,
deltaOwn.x()*gradGradDUXXZOwn + deltaOwn.y()*gradGradDUYXZOwn + deltaOwn.z()*gradGradDUZXZOwn,
extrapGradDU.internalField()[facei] = extrapFaceGrad;
deltaOwn.x()*gradGradDUXYXOwn + deltaOwn.y()*gradGradDUYYXOwn + deltaOwn.z()*gradGradDUZYXOwn,
deltaOwn.x()*gradGradDUXYYOwn + deltaOwn.y()*gradGradDUYYYOwn + deltaOwn.z()*gradGradDUZYYOwn,
deltaOwn.x()*gradGradDUXYZOwn + deltaOwn.y()*gradGradDUYYZOwn + deltaOwn.z()*gradGradDUZYZOwn,
deltaOwn.x()*gradGradDUXZXOwn + deltaOwn.y()*gradGradDUYZXOwn + deltaOwn.z()*gradGradDUZZXOwn,
deltaOwn.x()*gradGradDUXZYOwn + deltaOwn.y()*gradGradDUYZYOwn + deltaOwn.z()*gradGradDUZZYOwn,
deltaOwn.x()*gradGradDUXZZOwn + deltaOwn.y()*gradGradDUYZZOwn + deltaOwn.z()*gradGradDUZZZOwn
);
tensor deltaNeiDotgradGradDUNei = tensor
(
deltaNei.x()*gradGradDUXXXNei + deltaNei.y()*gradGradDUYXXNei + deltaNei.z()*gradGradDUZXXNei,
deltaNei.x()*gradGradDUXXYNei + deltaNei.y()*gradGradDUYXYNei + deltaNei.z()*gradGradDUZXYNei,
deltaNei.x()*gradGradDUXXZNei + deltaNei.y()*gradGradDUYXZNei + deltaNei.z()*gradGradDUZXZNei,
deltaNei.x()*gradGradDUXYXNei + deltaNei.y()*gradGradDUYYXNei + deltaNei.z()*gradGradDUZYXNei,
deltaNei.x()*gradGradDUXYYNei + deltaNei.y()*gradGradDUYYYNei + deltaNei.z()*gradGradDUZYYNei,
deltaNei.x()*gradGradDUXYZNei + deltaNei.y()*gradGradDUYYZNei + deltaNei.z()*gradGradDUZYZNei,
deltaNei.x()*gradGradDUXZXNei + deltaNei.y()*gradGradDUYZXNei + deltaNei.z()*gradGradDUZZXNei,
deltaNei.x()*gradGradDUXZYNei + deltaNei.y()*gradGradDUYZYNei + deltaNei.z()*gradGradDUZZYNei,
deltaNei.x()*gradGradDUXZZNei + deltaNei.y()*gradGradDUYZZNei + deltaNei.z()*gradGradDUZZZNei
);
// get average of extrapolated values
tensor extrapFaceGrad =
0.5*
(
gradDUOwn + (deltaOwnDotgradGradDUOwn)
+
gradDUNei + (deltaNeiDotgradGradDUNei)
);
extrapGradDU.internalField()[facei] = extrapFaceGrad;
}
// correction is zero on boundary
forAll(extrapGradDU.boundaryField(), patchi)
{
extrapGradDU.boundaryField()[patchi] =
averageGradDU.boundaryField()[patchi];
extrapGradDU.boundaryField()[patchi] =
averageGradDU.boundaryField()[patchi];
}
// calculate thirdOrderTerm
volVectorField divThirdOrderTerm (
"thirdOrderTerm",
fvc::div(
(2*muf+lambdaf)*mesh.Sf()
& (extrapGradDU - averageGradDU)
)
);
volVectorField divThirdOrderTerm
(
"thirdOrderTerm",
fvc::div
(
(2*muf+lambdaf)*mesh.Sf() & (extrapGradDU - averageGradDU)
)
);
// if(runTime.outputTime())
// {
// {
// divThirdOrderTerm.write();
// averageGradDU.write();
// extrapGradDU.write();
// }
// }

View file

@ -14,6 +14,7 @@
volTensorField gradDU = fvc::grad(DU);
Info<< "Creating field U\n" << endl;
volVectorField U
(
IOobject
@ -24,23 +25,23 @@
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedVector("zero", dimLength, vector::zero)
mesh,
dimensionedVector("zero", dimLength, vector::zero)
);
volTensorField gradU
(
IOobject
(
"grad(U)",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
"grad(U)",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedTensor("zero", dimless, tensor::zero)
);
);
//- Increment of Green finite strain tensor
volSymmTensorField DEpsilon
@ -53,8 +54,8 @@
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedSymmTensor("zero", dimless, symmTensor::zero)
mesh,
dimensionedSymmTensor("zero", dimless, symmTensor::zero)
);
volSymmTensorField epsilon
@ -67,8 +68,8 @@
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedSymmTensor("zero", dimless, symmTensor::zero)
mesh,
dimensionedSymmTensor("zero", dimless, symmTensor::zero)
);
//- plastic strain
@ -113,42 +114,41 @@
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedSymmTensor("zero", dimForce/dimArea, symmTensor::zero)
mesh,
dimensionedSymmTensor("zero", dimForce/dimArea, symmTensor::zero)
);
volVectorField divDSigmaExp
(
volVectorField divDSigmaExp
(
IOobject
(
"divDSigmaExp",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
"divDSigmaExp",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimensionSet(1,-2,-2,0,0,0,0), vector::zero)
);
dimensionedVector("zero", dimensionSet(1, -2, -2, 0, 0, 0, 0), vector::zero)
);
volVectorField divDSigmaNonLinExp
(
volVectorField divDSigmaNonLinExp
(
IOobject
(
"divDSigmaNonLinExp",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
"divDSigmaNonLinExp",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimensionSet(1,-2,-2,0,0,0,0), vector::zero)
);
);
constitutiveModel rheology(sigma, DU);
volScalarField rho = rheology.rho();
volScalarField mu = rheology.mu();
volScalarField lambda = rheology.lambda();
surfaceScalarField muf = fvc::interpolate(mu, "mu");
@ -156,11 +156,11 @@
surfaceVectorField n = mesh.Sf()/mesh.magSf();
// plastic strain increment
const volSymmTensorField& DEpsilonP = rheology.DEpsilonP();
// plastic strain increment
const volSymmTensorField& DEpsilonP = rheology.DEpsilonP();
// for aitken relaxation
volVectorField aitkenDelta
// for aitken relaxation
volVectorField aitkenDelta
(
IOobject
(
@ -171,22 +171,23 @@
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimLength, vector::zero)
dimensionedVector("zero", dimLength, vector::zero)
);
// aitken relaxation factor
scalar aitkenInitialRes = 1.0;
scalar aitkenTheta = 0.1;
// aitken relaxation factor
scalar aitkenInitialRes = 1.0;
scalar aitkenTheta = 0.1;
// volVectorField resid
// (
// IOobject
// (
// "resid",
// runTime.timeName(),
// mesh,
// IOobject::NO_READ,
// IOobject::AUTO_WRITE
// ),
// mesh,
// dimensionedVector("zero", dimless, vector::zero)
// );
// IOobject
// (
// "resid",
// runTime.timeName(),
// mesh,
// IOobject::NO_READ,
// IOobject::AUTO_WRITE
// ),
// mesh,
// dimensionedVector("zero", dimless, vector::zero)
// );

View file

@ -1,36 +1,36 @@
OFstream * forceFilePtr(NULL);
OFstream * stressFilePtr(NULL);
OFstream* forceFilePtr(NULL);
OFstream* stressFilePtr(NULL);
word historyPatchName(mesh.solutionDict().subDict("solidMechanics").lookup("historyPatch"));
label historyPatchID = mesh.boundaryMesh().findPatchID(historyPatchName);
if(historyPatchID == -1)
{
{
Warning << "history patch " << historyPatchName
<< " not found. Force-displacement will not be written"
<< endl;
}
else if(Pstream::master())
{
}
else if(Pstream::master())
{
fileName historyDir = "history";
mkDir(historyDir);
{
fileName forceFileName(historyDir/"forceDisp_"+historyPatchName+".dat");
Info << "\nForce-displacement for patch " << historyPatchName
<< " will be written to " << forceFileName
<< endl;
forceFilePtr = new OFstream(forceFileName);
OFstream& forceDispFile = *forceFilePtr;
forceDispFile << "#Disp(mm)\tForce(N)" << endl;
fileName forceFileName(historyDir/"forceDisp_"+historyPatchName+".dat");
Info << "\nForce-displacement for patch " << historyPatchName
<< " will be written to " << forceFileName
<< endl;
forceFilePtr = new OFstream(forceFileName);
OFstream& forceDispFile = *forceFilePtr;
forceDispFile << "#Disp(mm)\tForce(N)" << endl;
}
{
fileName stressFileName(historyDir/"stressStrain_"+historyPatchName+".dat");
Info << "\nStress(2nd Piola-Kirchoff)-strain(Green) for patch "
<< historyPatchName
<< " will be written to " << stressFileName
<< endl;
stressFilePtr = new OFstream(stressFileName);
OFstream& stressStrainFile = *stressFilePtr;
stressStrainFile << "#Strain(-)\tStress(Pa)" << endl;
fileName stressFileName(historyDir/"stressStrain_"+historyPatchName+".dat");
Info << "\nStress(2nd Piola-Kirchoff)-strain(Green) for patch "
<< historyPatchName
<< " will be written to " << stressFileName
<< endl;
stressFilePtr = new OFstream(stressFileName);
OFstream& stressStrainFile = *stressFilePtr;
stressStrainFile << "#Strain(-)\tStress(Pa)" << endl;
}
}
}

View file

@ -54,158 +54,158 @@ int main(int argc, char *argv[])
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
Info<< "\nStarting time loop\n" << endl;
while(runTime.loop())
while(runTime.loop())
{
Info<< "Time: " << runTime.timeName() << nl << endl;
Info<< "Time = " << runTime.timeName() << nl << endl;
# include "readSolidMechanicsControls.H"
# include "readSolidMechanicsControls.H"
int iCorr = 0;
scalar initialResidual = 0;
lduMatrix::solverPerformance solverPerf;
scalar relativeResidual = GREAT;
lduMatrix::debug = 0;
int iCorr = 0;
scalar initialResidual = 0;
lduMatrix::solverPerformance solverPerf;
scalar relativeResidual = GREAT;
lduMatrix::debug = 0;
do
{
DU.storePrevIter();
do
{
DU.storePrevIter();
# include "calculateDivDSigmaExp.H"
# include "calculateDivDSigmaNonLinExp.H"
# include "calculateDivDSigmaExp.H"
# include "calculateDivDSigmaNonLinExp.H"
// Incremental form of the
// linear momentum conservation
// ensuring conservation of total momentum
fvVectorMatrix DUEqn
(
fvm::d2dt2(rho, DU)
==
fvm::laplacian(2*muf + lambdaf, DU, "laplacian(DDU,DU)")
+ divDSigmaExp
+ divDSigmaNonLinExp
//- fvc::div(2*mu*DEpsilonP, "div(sigma)")
- fvc::div
(
2*muf*(mesh.Sf() & fvc::interpolate(DEpsilonP))
)
);
// Incremental form of the
// linear momentum conservation
// ensuring conservation of total momentum
fvVectorMatrix DUEqn
(
fvm::d2dt2(rho, DU)
==
fvm::laplacian(2*muf + lambdaf, DU, "laplacian(DDU,DU)")
+ divDSigmaExp
+ divDSigmaNonLinExp
//- fvc::div(2*mu*DEpsilonP, "div(sigma)")
- fvc::div
(
2*muf*(mesh.Sf() & fvc::interpolate(DEpsilonP))
)
);
if (largeStrainOverRelax)
{
// the terms (gradDU & gradU.T()) and (gradU & gradDU.T())
// are linearly dependent of DU and represent initial
// displacement effect
// which can cause convergence difficulties when treated
// explicitly
// so we implicitly over-relax with gradU & gradDU here
// which tends to help convergence
// this should improve convergence when gradU is large
// but maybe not execution time
DUEqn -=
fvm::laplacian
(
(2*mu + lambda)*gradU, DU, "laplacian(DDU,DU)"
)
- fvc::div((2*mu + lambda)*(gradU & gradDU), "div(sigma)");
}
if (largeStrainOverRelax)
{
// the terms (gradDU & gradU.T()) and (gradU & gradDU.T())
// are linearly dependent of DU and represent initial
// displacement effect
// which can cause convergence difficulties when treated
// explicitly
// so we implicitly over-relax with gradU & gradDU here
// which tends to help convergence
// this should improve convergence when gradU is large
// but maybe not execution time
DUEqn -=
fvm::laplacian
(
(2*mu + lambda)*gradU, DU, "laplacian(DDU,DU)"
)
- fvc::div((2*mu + lambda)*(gradU & gradDU), "div(sigma)");
}
if (nonLinearSemiImplicit)
{
// experimental
// we can treat the nonlinear term (gradDU & gradDU.T()) in a
// semi-implicit over-relaxed manner
// this should improve convergence when gradDU is large
// but maybe not execution time
DUEqn -=
fvm::laplacian
(
(2*mu + lambda)*gradDU, DU, "laplacian(DDU,DU)"
)
- fvc::div((2*mu + lambda)*(gradDU & gradDU), "div(sigma)");
}
if (nonLinearSemiImplicit)
{
// experimental
// we can treat the nonlinear term (gradDU & gradDU.T()) in a
// semi-implicit over-relaxed manner
// this should improve convergence when gradDU is large
// but maybe not execution time
DUEqn -=
fvm::laplacian
(
(2*mu + lambda)*gradDU, DU, "laplacian(DDU,DU)"
)
- fvc::div((2*mu + lambda)*(gradDU & gradDU), "div(sigma)");
}
solverPerf = DUEqn.solve();
solverPerf = DUEqn.solve();
if (iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
}
if (iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
}
if (aitkenRelax)
{
# include "aitkenRelaxation.H"
}
else
{
DU.relax();
}
if (aitkenRelax)
{
# include "aitkenRelaxation.H"
}
else
{
DU.relax();
}
gradDU = fvc::grad(DU);
gradDU = fvc::grad(DU);
// correct plasticty term
rheology.correct();
// correct plasticty term
rheology.correct();
# include "calculateDEpsilonDSigma.H"
# include "calculateRelativeResidual.H"
# include "calculateDEpsilonDSigma.H"
# include "calculateRelativeResidual.H"
if (iCorr % infoFrequency == 0)
{
Info<< "\tTime " << runTime.value()
<< ", Corrector " << iCorr
<< ", Solving for " << DU.name()
<< " using " << solverPerf.solverName()
<< ", res = " << solverPerf.initialResidual()
<< ", rel res = " << relativeResidual;
if(iCorr % infoFrequency == 0)
{
Info<< "\tTime " << runTime.value()
<< ", Corrector " << iCorr
<< ", Solving for " << DU.name()
<< " using " << solverPerf.solverName()
<< ", res = " << solverPerf.initialResidual()
<< ", rel res = " << relativeResidual;
if (aitkenRelax)
{
Info << ", aitken = " << aitkenTheta;
}
Info << ", iters = " << solverPerf.nIterations() << endl;
}
}
while
(
iCorr++ == 0
||
(
//solverPerf.initialResidual() > convergenceTolerance
relativeResidual > convergenceTolerance
&& iCorr < nCorr
)
);
if(aitkenRelax)
{
Info<< ", aitken = " << aitkenTheta;
}
Info<< ", iters = " << solverPerf.nIterations() << endl;
}
}
while
(
iCorr++ == 0
||
(
//solverPerf.initialResidual() > convergenceTolerance
relativeResidual > convergenceTolerance
&& iCorr < nCorr
)
);
Info<< nl << "Time " << runTime.value() << ", Solving for " << DU.name()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", Relative residual = " << relativeResidual
<< ", No outer iterations " << iCorr
<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< endl;
Info<< nl << "Time " << runTime.value() << ", Solving for " << DU.name()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", Relative residual = " << relativeResidual
<< ", No outer iterations " << iCorr
<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< endl;
// Update total quantities
U += DU;
gradU += gradDU;
epsilon += DEpsilon;
epsilonP += rheology.DEpsilonP();
sigma += DSigma;
rheology.updateYieldStress();
rho = rho/det(I+gradU);
// Update total quantities
U += DU;
gradU += gradDU;
epsilon += DEpsilon;
epsilonP += rheology.DEpsilonP();
sigma += DSigma;
rheology.updateYieldStress();
rho = rho/det(I+gradU);
# include "writeFields.H"
# include "writeHistory.H"
# include "writeFields.H"
# include "writeHistory.H"
Info<< "ExecutionTime = "
<< runTime.elapsedCpuTime()
<< " s\n\n" << endl;
Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< endl;
}
Info<< "End\n" << endl;
Info<< "End\n" << endl;
return(0);
return(0);
}

View file

@ -2,8 +2,8 @@
word divDSigmaNonLinExpMethod(mesh.solutionDict().subDict("solidMechanics").lookup("divSigmaNonLinExp"));
Info << "divSigmaNonLinExp method " << divDSigmaNonLinExpMethod << endl;
if(divDSigmaNonLinExpMethod != "standard" && divDSigmaNonLinExpMethod != "surface")
{
{
FatalError << "divSigmaNonLinExp method " << divDSigmaNonLinExpMethod << " not found!" << nl
<< "valid methods are:\nstandard\nsurface"
<< exit(FatalError);
}
<< "valid methods are:\nstandard\nsurface"
<< exit(FatalError);
}

View file

@ -1,45 +1,45 @@
//- write force displacement to file
if(historyPatchID != -1)
{
{
Info << "Writing disp-force to file for patch " << historyPatchName
<< endl;
<< endl;
//- for small strain or moving mesh
//scalar force = gSum(
// direction &
// (mesh.boundary()[historyPatchID].Sf() & sigma.boundaryField()[historyPatchID])
// );
//- for small strain or moving mesh
//scalar force = gSum(
// direction &
// (mesh.boundary()[historyPatchID].Sf() & sigma.boundaryField()[historyPatchID])
//);
//- for large strain total lagrangian
tensorField F = I + gradU.boundaryField()[historyPatchID];
vector force = gSum(mesh.Sf().boundaryField()[historyPatchID] & (sigma.boundaryField()[historyPatchID] & F));
vector disp = gAverage(U.boundaryField()[historyPatchID]);
//- for large strain total lagrangian
tensorField F = I + gradU.boundaryField()[historyPatchID];
vector force = gSum(mesh.Sf().boundaryField()[historyPatchID] & (sigma.boundaryField()[historyPatchID] & F));
vector disp = gAverage(U.boundaryField()[historyPatchID]);
Info << "Writing strain-stress to file for patch " << historyPatchName
<< endl;
<< endl;
// avaerage stress strain
symmTensor stress = gAverage(sigma.boundaryField()[historyPatchID]);
symmTensor strain = gAverage(epsilon.boundaryField()[historyPatchID]);
// average stress strain
symmTensor stress = gAverage(sigma.boundaryField()[historyPatchID]);
symmTensor strain = gAverage(epsilon.boundaryField()[historyPatchID]);
// write to file
if(Pstream::master())
{
OFstream& forceDispFile = *forceFilePtr;
label width = 20;
forceDispFile << disp.x() << " " << disp.y() << " " << disp.z();
forceDispFile.width(width);
forceDispFile << force.x() << " " << force.y() << " " << force.z()
<< endl;
// write to file
if(Pstream::master())
{
OFstream& forceDispFile = *forceFilePtr;
label width = 20;
forceDispFile << disp.x() << " " << disp.y() << " " << disp.z();
forceDispFile.width(width);
forceDispFile << force.x() << " " << force.y() << " " << force.z()
<< endl;
OFstream& stressStrainFile = *stressFilePtr;
stressStrainFile << strain.xx() << " " << strain.xy() << " " << strain.xz() << " "
<< strain.yy() << " " << strain.yz() << " " << strain.zz();
stressStrainFile.width(width);
stressStrainFile << stress.xx() << " " << stress.xy() << " " << stress.xz() << " "
<< stress.yy() << " " << stress.yz() << " " << stress.zz()
<< endl;
}
}
OFstream& stressStrainFile = *stressFilePtr;
stressStrainFile << strain.xx() << " " << strain.xy() << " " << strain.xz() << " "
<< strain.yy() << " " << strain.yz() << " " << strain.zz();
stressStrainFile.width(width);
stressStrainFile << stress.xx() << " " << stress.xy() << " " << stress.xz() << " "
<< stress.yy() << " " << stress.yz() << " " << stress.zz()
<< endl;
}
}

View file

@ -1,8 +1,8 @@
// aitken acceleration
if(iCorr == 0)
{
{
aitkenInitialRes = gMax(mag(DU.internalField()));
}
}
aitkenDelta.storePrevIter();
@ -11,26 +11,24 @@ aitkenDelta = (DU - DU.prevIter()) / aitkenInitialRes;
// update relaxation factor
if(iCorr == 0)
{
{
aitkenTheta = 0.1;
}
else
{
vectorField b = aitkenDelta.internalField() - aitkenDelta.prevIter().internalField();
//scalar sumMagB = gSum(mag(b));
scalar sumMagB = gSum(magSqr(b));
if(sumMagB < SMALL)
{
//Warning << "Aitken under-relaxation: denominator less then SMALL"
// << endl;
sumMagB += SMALL;
}
}
else
{
vectorField b = aitkenDelta.internalField() - aitkenDelta.prevIter().internalField();
//scalar sumMagB = gSum(mag(b));
scalar sumMagB = gSum(magSqr(b));
if(sumMagB < SMALL)
{
//Warning << "Aitken under-relaxation: denominator less then SMALL"
// << endl;
sumMagB += SMALL;
}
aitkenTheta = -aitkenTheta*
gSum(aitkenDelta.prevIter().internalField() & b)
/
sumMagB;
}
aitkenTheta = -aitkenTheta*
gSum(aitkenDelta.prevIter().internalField() & b)/sumMagB;
}
// correction to the latest DU
DU += aitkenTheta*aitkenDelta*aitkenInitialRes;

View file

@ -1,47 +1,43 @@
if(divDSigmaExpMethod == "standard")
{
{
divDSigmaExp = fvc::div
(
mu*gradDU.T() + lambda*(I*tr(gradDU)) - (mu + lambda)*gradDU,
"div(sigma)"
);
}
else if(divDSigmaExpMethod == "surface")
{
divDSigmaExp = fvc::div
(
muf*(mesh.Sf() & fvc::interpolate(gradDU.T()))
+ lambdaf*(mesh.Sf() & I*fvc::interpolate(tr(gradDU)))
- (muf + lambdaf)*(mesh.Sf() & fvc::interpolate(gradDU))
(
mu*gradDU.T() + lambda*(I*tr(gradDU)) - (mu + lambda)*gradDU,
"div(sigma)"
);
}
else if(divDSigmaExpMethod == "decompose")
{
surfaceTensorField shearGradDU =
((I - n*n)&fvc::interpolate(gradDU));
}
else if(divDSigmaExpMethod == "surface")
{
divDSigmaExp = fvc::div
(
muf*(mesh.Sf() & fvc::interpolate(gradDU.T()))
+ lambdaf*(mesh.Sf() & I*fvc::interpolate(tr(gradDU)))
- (muf + lambdaf)*(mesh.Sf() & fvc::interpolate(gradDU))
);
}
else if(divDSigmaExpMethod == "decompose")
{
surfaceTensorField shearGradDU = ((I - n*n) & fvc::interpolate(gradDU));
divDSigmaExp = fvc::div
(
mesh.magSf()
*(
- (muf + lambdaf)*(fvc::snGrad(DU)&(I - n*n))
+ lambdaf*tr(shearGradDU&(I - n*n))*n
+ muf*(shearGradDU&n)
)
divDSigmaExp = fvc::div
(
mesh.magSf()*
(
- (muf + lambdaf)*(fvc::snGrad(DU) & (I - n*n))
+ lambdaf*tr(shearGradDU&(I - n*n))*n
+ muf*(shearGradDU&n)
)
);
}
else if(divDSigmaExpMethod == "laplacian")
{
divDSigmaExp =
- fvc::laplacian(mu + lambda, DU, "laplacian(DDU,DU)")
+ fvc::div
(
mu*gradDU.T()
+ lambda*(I*tr(gradDU)),
"div(sigma)"
);
}
else
{
FatalError << "divDSigmaExp method " << divDSigmaExpMethod << " not found!" << endl;
}
}
else if(divDSigmaExpMethod == "laplacian")
{
divDSigmaExp =
- fvc::laplacian(mu + lambda, DU, "laplacian(DDU,DU)")
+ fvc::div(mu*gradDU.T() + lambda*(I*tr(gradDU)), "div(sigma)");
}
else
{
FatalErrorIn(args.executable())
<< "divDSigmaExp method " << divDSigmaExpMethod << " not found!"
<< abort(FatalError);
}

View file

@ -3,8 +3,7 @@
//----------------------------------------------------//
if(divDSigmaLargeStrainExpMethod == "standard")
{
divDSigmaLargeStrainExp =
fvc::div
divDSigmaLargeStrainExp = fvc::div
(
mu*(gradDU & gradDU.T())
+ 0.5*lambda*(gradDU && gradDU)*I //- equivalent to 0.5*lambda*(I*tr(gradDU & gradDU.T()))
@ -14,8 +13,7 @@ if(divDSigmaLargeStrainExpMethod == "standard")
}
else if(divDSigmaLargeStrainExpMethod == "surface")
{
divDSigmaLargeStrainExp =
fvc::div
divDSigmaLargeStrainExp = fvc::div
(
muf * (mesh.Sf() & fvc::interpolate(gradDU & gradDU.T()))
+ 0.5*lambdaf * (mesh.Sf() & (fvc::interpolate(gradDU && gradDU)*I))
@ -25,9 +23,9 @@ else if(divDSigmaLargeStrainExpMethod == "surface")
}
else
{
FatalError
<< "divDSigmaLargeStrainMethod not found!"
<< exit(FatalError);
FatalError
<< "divDSigmaLargeStrainMethod not found!"
<< exit(FatalError);
}
//- relax

View file

@ -1,26 +1,26 @@
if(divDSigmaNonLinExpMethod == "standard")
{
{
divDSigmaNonLinExp = fvc::div
(
( mu * (gradDU & gradDU.T()) )
+ ( 0.5 * lambda * tr(gradDU & gradDU.T()) * I )
+ ( (sigma + DSigma) & gradDU ),
"div(sigma)"
);
}
else if(divDSigmaNonLinExpMethod == "surface")
{
divDSigmaNonLinExp =
fvc::div(
mesh.magSf()
*(
( muf * (n & fvc::interpolate( gradDU & gradDU.T() )) )
(
( mu * (gradDU & gradDU.T()) )
+ ( 0.5 * lambda * tr(gradDU & gradDU.T()) * I )
+ ( (sigma + DSigma) & gradDU ),
"div(sigma)"
);
}
else if(divDSigmaNonLinExpMethod == "surface")
{
divDSigmaNonLinExp = fvc::div
(
mesh.magSf()*
(
( muf * (n & fvc::interpolate( gradDU & gradDU.T() )) )
+ ( 0.5*lambdaf * (n * tr(fvc::interpolate( gradDU & gradDU.T() ))) )
+ (n & fvc::interpolate( (sigma + DSigma) & gradDU ))
)
);
}
else
{
FatalError << "divDSigmaExp method " << divDSigmaExpMethod << " not found!" << endl;
}
)
);
}
else
{
FatalError << "divDSigmaExp method " << divDSigmaExpMethod << " not found!" << endl;
}

View file

@ -15,59 +15,57 @@
FieldField<Field, vector> extraVecs(ptc.size());
{
const labelListList& pfaces = mesh.pointFaces();
const labelListList& pfaces = mesh.pointFaces();
const volVectorField& centres = mesh.C();
const volVectorField& centres = mesh.C();
const fvBoundaryMesh& bm = mesh.boundary();
const fvBoundaryMesh& bm = mesh.boundary();
forAll (ptc, pointI)
forAll (ptc, pointI)
{
const label curPoint = ptc[pointI];
const label curPoint = ptc[pointI];
const labelList& curFaces = pfaces[curPoint];
const labelList& curFaces = pfaces[curPoint];
// extraVecs.hook(new vectorField(curFaces.size())); //- no hook function
extraVecs.set
(
pointI,
new vectorField(curFaces.size())
);
vectorField& curExtraVectors = extraVecs[pointI];
label nFacesAroundPoint = 0;
const vector& pointLoc = mesh.points()[curPoint];
// Go through all the faces
forAll (curFaces, faceI)
{
if (!mesh.isInternalFace(curFaces[faceI]))
{
// This is a boundary face. If not in the empty patch
// or coupled calculate the extrapolation vector
label patchID =
mesh.boundaryMesh().whichPatch(curFaces[faceI]);
if
// extraVecs.hook(new vectorField(curFaces.size())); //- no hook function
extraVecs.set
(
!isA<emptyFvPatch>(bm[patchID])
&& !bm[patchID].coupled()
)
pointI,
new vectorField(curFaces.size())
);
vectorField& curExtraVectors = extraVecs[pointI];
label nFacesAroundPoint = 0;
const vector& pointLoc = mesh.points()[curPoint];
// Go through all the faces
forAll (curFaces, faceI)
{
// Found a face for extrapolation
curExtraVectors[nFacesAroundPoint] =
pointLoc
- centres.boundaryField()[patchID]
[bm[patchID].patch().whichFace(curFaces[faceI])];
if (!mesh.isInternalFace(curFaces[faceI]))
{
// This is a boundary face. If not in the empty patch
// or coupled calculate the extrapolation vector
label patchID =
mesh.boundaryMesh().whichPatch(curFaces[faceI]);
nFacesAroundPoint++;
if
(
!isA<emptyFvPatch>(bm[patchID]) && !bm[patchID].coupled()
)
{
// Found a face for extrapolation
curExtraVectors[nFacesAroundPoint] =
pointLoc
- centres.boundaryField()[patchID]
[bm[patchID].patch().whichFace(curFaces[faceI])];
nFacesAroundPoint++;
}
}
}
}
}
curExtraVectors.setSize(nFacesAroundPoint);
curExtraVectors.setSize(nFacesAroundPoint);
}
}

View file

@ -8,114 +8,114 @@
FieldField<Field, scalar> w(ptc.size());
{
const labelListList& pf = mesh.pointFaces();
const labelListList& pf = mesh.pointFaces();
const volVectorField& centres = mesh.C();
const volVectorField& centres = mesh.C();
const fvBoundaryMesh& bm = mesh.boundary();
const fvBoundaryMesh& bm = mesh.boundary();
pointScalarField volPointSumWeights
pointScalarField volPointSumWeights
(
IOobject
(
"volPointSumWeights",
mesh.polyMesh::instance(),
mesh
),
pMesh,
dimensionedScalar("zero", dimless, 0)
);
forAll (ptc, pointI)
{
const label curPoint = ptc[pointI];
const labelList& curFaces = pf[curPoint];
//w.hook(new scalarField(curFaces.size())); //philipc no hook function
w.set
(
pointI,
new scalarField(curFaces.size())
);
scalarField& curWeights = w[pointI];
label nFacesAroundPoint = 0;
const vector& pointLoc = mesh.points()[curPoint];
// Go through all the faces
forAll (curFaces, faceI)
{
if (!mesh.isInternalFace(curFaces[faceI]))
{
// This is a boundary face. If not in the empty patch
// or coupled calculate the extrapolation vector
label patchID =
mesh.boundaryMesh().whichPatch(curFaces[faceI]);
if
IOobject
(
!isA<emptyFvPatch>(bm[patchID])
&& !(
bm[patchID].coupled()
//&& Pstream::parRun()
//&& !mesh.parallelData().cyclicParallel()
)
)
{
curWeights[nFacesAroundPoint] =
1.0/mag
(
pointLoc
- centres.boundaryField()[patchID]
[
bm[patchID].patch().whichFace(curFaces[faceI])
]
);
nFacesAroundPoint++;
}
}
}
// Reset the sizes of the local weights
curWeights.setSize(nFacesAroundPoint);
// Collect the sum of weights for parallel correction
volPointSumWeights[curPoint] += sum(curWeights);
}
// Do parallel correction of weights
// Update coupled boundaries
// Work-around for cyclic parallels.
/*if (Pstream::parRun() && !mesh.parallelData().cyclicParallel())
{
forAll (volPointSumWeights.boundaryField(), patchI)
{
if (volPointSumWeights.boundaryField()[patchI].coupled())
{
volPointSumWeights.boundaryField()[patchI].initAddField();
}
}
forAll (volPointSumWeights.boundaryField(), patchI)
{
if (volPointSumWeights.boundaryField()[patchI].coupled())
{
volPointSumWeights.boundaryField()[patchI].addField
(
volPointSumWeights.internalField()
"volPointSumWeights",
mesh.polyMesh::instance(),
mesh
),
pMesh,
dimensionedScalar("zero", dimless, 0)
);
forAll (ptc, pointI)
{
const label curPoint = ptc[pointI];
const labelList& curFaces = pf[curPoint];
//w.hook(new scalarField(curFaces.size())); //philipc no hook function
w.set
(
pointI,
new scalarField(curFaces.size())
);
scalarField& curWeights = w[pointI];
label nFacesAroundPoint = 0;
const vector& pointLoc = mesh.points()[curPoint];
// Go through all the faces
forAll (curFaces, faceI)
{
if (!mesh.isInternalFace(curFaces[faceI]))
{
// This is a boundary face. If not in the empty patch
// or coupled calculate the extrapolation vector
label patchID =
mesh.boundaryMesh().whichPatch(curFaces[faceI]);
if
(
!isA<emptyFvPatch>(bm[patchID])
&& !(
bm[patchID].coupled()
//&& Pstream::parRun()
//&& !mesh.parallelData().cyclicParallel()
)
)
{
curWeights[nFacesAroundPoint] =
1.0/mag
(
pointLoc
- centres.boundaryField()[patchID]
[
bm[patchID].patch().whichFace(curFaces[faceI])
]
);
nFacesAroundPoint++;
}
}
}
// Reset the sizes of the local weights
curWeights.setSize(nFacesAroundPoint);
// Collect the sum of weights for parallel correction
volPointSumWeights[curPoint] += sum(curWeights);
}
}
// Do parallel correction of weights
// Update coupled boundaries
// Work-around for cyclic parallels.
/*if (Pstream::parRun() && !mesh.parallelData().cyclicParallel())
{
forAll (volPointSumWeights.boundaryField(), patchI)
{
if (volPointSumWeights.boundaryField()[patchI].coupled())
{
volPointSumWeights.boundaryField()[patchI].initAddField();
}
}
forAll (volPointSumWeights.boundaryField(), patchI)
{
if (volPointSumWeights.boundaryField()[patchI].coupled())
{
volPointSumWeights.boundaryField()[patchI].addField
(
volPointSumWeights.internalField()
);
}
}
}*/
// Re-scale the weights for the current point
forAll (ptc, pointI)
// Re-scale the weights for the current point
forAll (ptc, pointI)
{
w[pointI] /= volPointSumWeights[ptc[pointI]];
w[pointI] /= volPointSumWeights[ptc[pointI]];
}
}

View file

@ -107,36 +107,35 @@
//- explicit terms in the momentum equation
volVectorField divDSigmaExp
(
IOobject
(
"divDSigmaExp",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimensionSet(1, -2, -2, 0, 0, 0, 0), vector::zero)
);
volVectorField divDSigmaNonLinExp
(
IOobject
(
"divDSigmaNonLinExp",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
"divDSigmaExp",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimensionSet(1, -2, -2, 0, 0, 0, 0), vector::zero)
);
volVectorField divDSigmaNonLinExp
(
IOobject
(
"divDSigmaNonLinExp",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimensionSet(1,-2,-2,0,0,0,0), vector::zero)
);
);
constitutiveModel rheology(sigma, DU);
volScalarField rho = rheology.rho();
volScalarField mu = rheology.mu();
volScalarField lambda = rheology.lambda();
surfaceScalarField muf = fvc::interpolate(rheology.mu());
@ -144,37 +143,38 @@
surfaceVectorField n = mesh.Sf()/mesh.magSf();
// plastic strain increment
const volSymmTensorField& DEpsilonP = rheology.DEpsilonP();
// plastic strain increment
const volSymmTensorField& DEpsilonP = rheology.DEpsilonP();
// for aitken relaxation
volVectorField aitkenDelta
(
// for aitken relaxation
volVectorField aitkenDelta
(
IOobject
(
"aitkenDelta",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
"aitkenDelta",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimLength, vector::zero)
);
// aitken relaxation factor
scalar aitkenInitialRes = 1.0;
scalar aitkenTheta = 0.1;
// aitken relaxation factor
scalar aitkenInitialRes = 1.0;
scalar aitkenTheta = 0.1;
// volVectorField resid
// (
// IOobject
// (
// "resid",
// runTime.timeName(),
// mesh,
// IOobject::NO_READ,
// IOobject::AUTO_WRITE
// ),
// mesh,
// dimensionedVector("zero", dimless, vector::zero)
// );
// IOobject
// (
// "resid",
// runTime.timeName(),
// mesh,
// IOobject::NO_READ,
// IOobject::AUTO_WRITE
// ),
// mesh,
// dimensionedVector("zero", dimless, vector::zero)
// );

View file

@ -1,36 +1,36 @@
OFstream * forceFilePtr(NULL);
OFstream * stressFilePtr(NULL);
OFstream* forceFilePtr(NULL);
OFstream* stressFilePtr(NULL);
word historyPatchName(mesh.solutionDict().subDict("solidMechanics").lookup("historyPatch"));
label historyPatchID = mesh.boundaryMesh().findPatchID(historyPatchName);
if(historyPatchID == -1)
{
{
Warning << "history patch " << historyPatchName
<< " not found. Force-displacement will not be written"
<< endl;
}
else if(Pstream::master())
{
}
else if(Pstream::master())
{
fileName historyDir = "history";
mkDir(historyDir);
{
fileName forceFileName(historyDir/"forceDisp_"+historyPatchName+".dat");
Info << "\nForce-displacement for patch " << historyPatchName
<< " will be written to " << forceFileName
<< endl;
forceFilePtr = new OFstream(forceFileName);
OFstream& forceDispFile = *forceFilePtr;
forceDispFile << "#Disp(mm)\tForce(N)" << endl;
fileName forceFileName(historyDir/"forceDisp_"+historyPatchName+".dat");
Info << "\nForce-displacement for patch " << historyPatchName
<< " will be written to " << forceFileName
<< endl;
forceFilePtr = new OFstream(forceFileName);
OFstream& forceDispFile = *forceFilePtr;
forceDispFile << "#Disp(mm)\tForce(N)" << endl;
}
{
fileName stressFileName(historyDir/"stressStrain_"+historyPatchName+".dat");
Info << "\nCauchy Stress vs. Almansi Strain for patch "
<< historyPatchName
<< " will be written to " << stressFileName
<< endl;
stressFilePtr = new OFstream(stressFileName);
OFstream& stressStrainFile = *stressFilePtr;
stressStrainFile << "#Strain(-)\tStress(Pa)" << endl;
fileName stressFileName(historyDir/"stressStrain_"+historyPatchName+".dat");
Info << "\nCauchy Stress vs. Almansi Strain for patch "
<< historyPatchName
<< " will be written to " << stressFileName
<< endl;
stressFilePtr = new OFstream(stressFileName);
OFstream& stressStrainFile = *stressFilePtr;
stressStrainFile << "#Strain(-)\tStress(Pa)" << endl;
}
}
}

View file

@ -4,26 +4,26 @@ solidInterface* solidInterfacePtr(NULL);
{
const dictionary& stressControl =
mesh.solutionDict().subDict("solidMechanics");
mesh.solutionDict().subDict("solidMechanics");
solidInterfaceCorr = Switch(stressControl.lookup("solidInterface"));
if(solidInterfaceCorr)
{
Info << "Creating solid interface correction" << endl;
solidInterfacePtr = new solidInterface(mesh, rheology);
solidInterfacePtr->modifyProperties(muf, lambdaf);
{
Info << "Creating solid interface correction" << endl;
solidInterfacePtr = new solidInterface(mesh, rheology);
solidInterfacePtr->modifyProperties(muf, lambdaf);
//- solidInterface needs muf and lambdaf to be used for divDSigmaExp
if(divDSigmaExpMethod != "surface" && divDSigmaExpMethod != "decompose")
{
FatalError << "divDSigmaExp must be decompose or surface when solidInterface is on"
<< exit(FatalError);
}
if(divDSigmaLargeStrainExpMethod == "surface")
{
FatalError << "divDSigmaLargeStrainExp must be surface when solidInterface is on"
<< exit(FatalError);
}
}
//- solidInterface needs muf and lambdaf to be used for divDSigmaExp
if(divDSigmaExpMethod != "surface" && divDSigmaExpMethod != "decompose")
{
FatalError << "divDSigmaExp must be decompose or surface when solidInterface is on"
<< exit(FatalError);
}
if(divDSigmaLargeStrainExpMethod == "surface")
{
FatalError << "divDSigmaLargeStrainExp must be surface when solidInterface is on"
<< exit(FatalError);
}
}
}

View file

@ -4,26 +4,26 @@ solidInterfaceNonLin* solidInterfacePtr(NULL);
{
const dictionary& stressControl =
mesh.solutionDict().subDict("solidMechanics");
mesh.solutionDict().subDict("solidMechanics");
solidInterfaceCorr = Switch(stressControl.lookup("solidInterface"));
if(solidInterfaceCorr)
{
Info << "Creating solid interface nonlinear correction" << endl;
solidInterfacePtr = new solidInterfaceNonLin(mesh, rheology);
solidInterfacePtr->modifyProperties(muf, lambdaf);
{
Info << "Creating solid interface nonlinear correction" << endl;
solidInterfacePtr = new solidInterfaceNonLin(mesh, rheology);
solidInterfacePtr->modifyProperties(muf, lambdaf);
//- solidInterface needs muf and lambdaf to be used for divDSigmaExp
if(divDSigmaExpMethod != "surface" && divDSigmaExpMethod != "decompose")
{
FatalError << "divDSigmaExp must be decompose or surface when solidInterface is on"
<< exit(FatalError);
}
if(divDSigmaLargeStrainExpMethod != "surface")
{
FatalError << "divDSigmaLargeStrainExp must be surface when solidInterface is on"
<< exit(FatalError);
}
}
//- solidInterface needs muf and lambdaf to be used for divDSigmaExp
if(divDSigmaExpMethod != "surface" && divDSigmaExpMethod != "decompose")
{
FatalError << "divDSigmaExp must be decompose or surface when solidInterface is on"
<< exit(FatalError);
}
if(divDSigmaLargeStrainExpMethod != "surface")
{
FatalError << "divDSigmaLargeStrainExp must be surface when solidInterface is on"
<< exit(FatalError);
}
}
}

View file

@ -69,139 +69,141 @@ int main(int argc, char *argv[])
# include "readMoveMeshMethod.H"
# include "findGlobalFaceZones.H"
//* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info << "\nStarting time loop\n" << endl;
Info<< "\nStarting time loop\n" << endl;
for (runTime++; !runTime.end(); runTime++)
while(runTime.loop())
{
Info<< "Time = " << runTime.timeName() << nl << endl;
Info<< "Time = " << runTime.timeName() << nl << endl;
# include "readSolidMechanicsControls.H"
# include "readSolidMechanicsControls.H"
int iCorr = 0;
lduMatrix::solverPerformance solverPerf;
scalar initialResidual = 0;
scalar relativeResidual = 1.0;
lduMatrix::debug = 0;
int iCorr = 0;
lduMatrix::solverPerformance solverPerf;
scalar initialResidual = 0;
scalar relativeResidual = 1.0;
lduMatrix::debug = 0;
do
{
DU.storePrevIter();
do
{
DU.storePrevIter();
# include "calculateDivDSigmaExp.H"
# include "calculateDivDSigmaNonLinExp.H"
# include "calculateDivDSigmaExp.H"
# include "calculateDivDSigmaNonLinExp.H"
// Updated lagrangian large strain momentum equation
fvVectorMatrix DUEqn
(
fvm::d2dt2(rho,DU)
==
fvm::laplacian(2*muf + lambdaf, DU, "laplacian(DDU,DU)")
+ divDSigmaExp
+ divDSigmaNonLinExp
//- fvc::div(2*mu*DEpsilonP, "div(sigma)")
- fvc::div(2*muf*( mesh.Sf() & fvc::interpolate(DEpsilonP)) )
);
// Updated lagrangian large strain momentum equation
fvVectorMatrix DUEqn
(
fvm::d2dt2(rho,DU)
==
fvm::laplacian(2*muf + lambdaf, DU, "laplacian(DDU,DU)")
+ divDSigmaExp
+ divDSigmaNonLinExp
//- fvc::div(2*mu*DEpsilonP, "div(sigma)")
- fvc::div(2*muf*( mesh.Sf() & fvc::interpolate(DEpsilonP)) )
);
if(nonLinearSemiImplicit)
{
// experimental
// we can treat the nonlinear term (gradDU & gradDU.T()) in a
// semi-implicit over-relaxed manner
// this should improve convergence when gradDU is large
// but maybe not execution time
DUEqn -=
fvm::laplacian
(
(2*mu + lambda)*gradDU, DU, "laplacian(DDU,DU)"
)
if(nonLinearSemiImplicit)
{
// experimental
// we can treat the nonlinear term (gradDU & gradDU.T()) in a
// semi-implicit over-relaxed manner
// this should improve convergence when gradDU is large
// but maybe not execution time
DUEqn -=
fvm::laplacian
(
(2*mu + lambda)*gradDU, DU, "laplacian(DDU,DU)"
)
- fvc::div( (2*mu + lambda)*(gradDU&gradDU), "div(sigma)");
}
}
solverPerf = DUEqn.solve();
solverPerf = DUEqn.solve();
if(iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
}
if(iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
}
if(aitkenRelax)
{
# include "aitkenRelaxation.H"
}
else
{
DU.relax();
}
if(aitkenRelax)
{
# include "aitkenRelaxation.H"
}
else
{
DU.relax();
}
gradDU = fvc::grad(DU);
gradDU = fvc::grad(DU);
// correct plasticty term
rheology.correct();
// correct plasticty term
rheology.correct();
// correct elastic properties
// for nonlinear elastic materials
//mu = rheology.newMu();
//lambda = rheology.newLambda();
//muf = fvc::interpolate(mu);
//lambdaf = fvc::interpolate(lambda);
// correct elastic properties
// for nonlinear elastic materials
//mu = rheology.newMu();
//lambda = rheology.newLambda();
//muf = fvc::interpolate(mu);
//lambdaf = fvc::interpolate(lambda);
# include "calculateDEpsilonDSigma.H"
# include "calculateRelativeResidual.H"
# include "calculateDEpsilonDSigma.H"
# include "calculateRelativeResidual.H"
if(iCorr % infoFrequency == 0)
{
Info<< "\tTime " << runTime.value()
<< ", Corrector " << iCorr
<< ", Solving for " << DU.name()
<< " using " << solverPerf.solverName()
<< ", res = " << solverPerf.initialResidual()
<< ", rel res = " << relativeResidual;
if(aitkenRelax)
{
Info<< ", aitken = " << aitkenTheta;
}
Info<< ", iters = " << solverPerf.nIterations() << endl;
}
}
while
(
iCorr++ < 2
||
(//solverPerf.initialResidual() > convergenceTolerance
relativeResidual > convergenceTolerance
&&
iCorr < nCorr)
);
if(iCorr % infoFrequency == 0)
{
Info<< "\tTime " << runTime.value()
<< ", Corrector " << iCorr
<< ", Solving for " << DU.name()
<< " using " << solverPerf.solverName()
<< ", res = " << solverPerf.initialResidual()
<< ", rel res = " << relativeResidual;
if(aitkenRelax)
{
Info<< ", aitken = " << aitkenTheta;
}
Info<< ", iters = " << solverPerf.nIterations() << endl;
}
}
while
(
iCorr++ < 2
||
(
//solverPerf.initialResidual() > convergenceTolerance
relativeResidual > convergenceTolerance
&& iCorr < nCorr
)
);
Info<< nl << "Time " << runTime.value() << ", Solving for " << DU.name()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", Final rel residual = " << relativeResidual
<< ", No outer iterations " << iCorr << endl;
Info<< nl << "Time " << runTime.value() << ", Solving for " << DU.name()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", Final rel residual = " << relativeResidual
<< ", No outer iterations " << iCorr << endl;
rheology.updateYieldStress();
rheology.updateYieldStress();
U += DU;
epsilon += DEpsilon;
epsilonP += DEpsilonP;
sigma += DSigma;
U += DU;
epsilon += DEpsilon;
epsilonP += DEpsilonP;
sigma += DSigma;
# include "moveMesh.H"
# include "rotateFields.H"
# include "writeFields.H"
# include "writeHistory.H"
# include "moveMesh.H"
# include "rotateFields.H"
# include "writeFields.H"
# include "writeHistory.H"
Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< endl;
Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< endl;
}
Info<< "End\n" << endl;
Info<< "End\n" << endl;
return(0);
return(0);
}
// ************************************************************************* //

View file

@ -8,26 +8,26 @@ const fvBoundaryMesh& bm = mesh.boundary();
forAll (bm, patchI)
{
// If the patch is empty, skip it
// If the patch is coupled, and there are no cyclic parallels, skip it
if
// If the patch is empty, skip it
// If the patch is coupled, and there are no cyclic parallels, skip it
if
(
!isA<emptyFvPatch>(bm[patchI])
&& !(
bm[patchI].coupled()
//&& Pstream::parRun()
//&& !mesh.parallelData().cyclicParallel()
)
)
!isA<emptyFvPatch>(bm[patchI])
&& !(
bm[patchI].coupled()
//&& Pstream::parRun()
//&& !mesh.parallelData().cyclicParallel()
)
)
{
const labelList& bp = bm[patchI].patch().boundaryPoints();
const labelList& bp = bm[patchI].patch().boundaryPoints();
const labelList& meshPoints = bm[patchI].patch().meshPoints();
const labelList& meshPoints = bm[patchI].patch().meshPoints();
forAll (bp, pointI)
{
pointsCorrectionMap.insert(meshPoints[bp[pointI]]);
}
forAll (bp, pointI)
{
pointsCorrectionMap.insert(meshPoints[bp[pointI]]);
}
}
}

Some files were not shown because too many files have changed in this diff Show more