Convert tabs to fours spaces systematically

This commit is contained in:
Henrik Rusche 2013-07-18 03:43:15 +02:00
parent 3241862b6c
commit 8141282b1d
321 changed files with 8612 additions and 8598 deletions

View file

@ -5,33 +5,33 @@ if(divDSigmaExpMethod == "standard")
mu*gradDU.T() + lambda*(I*tr(gradDU)) - (mu + lambda)*gradDU,
"div(sigma)"
);
}
else if(divDSigmaExpMethod == "surface")
{
}
else if(divDSigmaExpMethod == "surface")
{
divDSigmaExp = fvc::div
(
muf*(mesh.Sf() & fvc::interpolate(gradDU.T()))
+ lambdaf*(mesh.Sf() & I*fvc::interpolate(tr(gradDU)))
- (muf + lambdaf)*(mesh.Sf() & fvc::interpolate(gradDU))
);
}
else if(divDSigmaExpMethod == "decompose")
{
surfaceTensorField shearGradDU =
((I - n*n)&fvc::interpolate(gradDU));
}
else if(divDSigmaExpMethod == "decompose")
{
surfaceTensorField shearGradDU = ((I - n*n)&fvc::interpolate(gradDU));
divDSigmaExp = fvc::div
(
mesh.magSf()
*(
*
(
- (muf + lambdaf)*(fvc::snGrad(DU)&(I - n*n))
+ lambdaf*tr(shearGradDU&(I - n*n))*n
+ muf*(shearGradDU&n)
)
);
}
else if(divDSigmaExpMethod == "laplacian")
{
}
else if(divDSigmaExpMethod == "laplacian")
{
divDSigmaExp =
- fvc::laplacian(mu + lambda, DU, "laplacian(DDU,DU)")
+ fvc::div
@ -40,8 +40,8 @@ if(divDSigmaExpMethod == "standard")
+ lambda*(I*tr(gradDU)),
"div(sigma)"
);
}
else
{
}
else
{
FatalError << "divDSigmaExp method " << divDSigmaExpMethod << " not found!" << endl;
}
}

View file

@ -23,7 +23,7 @@ philipc
//- this is only needed in a parallel runs
if(Pstream::parRun())
{
{
//***** FIX INCORRECT POINT ON PATCHES WITH FACEZONE *****//
contactPatchPairList& contacts = contact;
@ -33,9 +33,13 @@ if(Pstream::parRun())
label slaveID = contacts[contactI].slavePatch().index();
primitivePatchInterpolation masterInterpolator
(mesh.boundaryMesh()[masterID]);
(
mesh.boundaryMesh()[masterID]
);
primitivePatchInterpolation slaveInterpolator
(mesh.boundaryMesh()[slaveID]);
(
mesh.boundaryMesh()[slaveID]
);
//- U must be interpolated to the vertices, this ignores the faceZone
//- points with no U (unlike volPointInterpolation)
@ -65,23 +69,17 @@ if(Pstream::parRun())
{
label pointGlobalLabel = masterPointLabels[pointI];
newPoints[pointGlobalLabel] =
oldMasterPoints[pointI]
+
correctMasterPointU[pointI];
oldMasterPoints[pointI] + correctMasterPointU[pointI];
}
forAll(slavePointLabels, pointI)
{
label pointGlobalLabel = slavePointLabels[pointI];
newPoints[pointGlobalLabel] =
oldSlavePoints[pointI]
+
correctSlavePointU[pointI];
oldSlavePoints[pointI] + correctSlavePointU[pointI];
}
}
//***** NOW FIX AND SYNCHRONISE ALL THE FACEZONE POINTS *****//
forAll(mesh.faceZones(), faceZoneI)
@ -117,8 +115,7 @@ if(Pstream::parRun())
{
label procPoint =
mesh.faceZones()[faceZoneI]().meshPoints()[localPoint];
globalFZnewPoints[globalPointI] =
newPoints[procPoint];
globalFZnewPoints[globalPointI] = newPoints[procPoint];
pointNumProcs[globalPointI] = 1;
}
}
@ -141,20 +138,16 @@ if(Pstream::parRun())
forAll(globalFZnewPoints, globalPointI)
{
label localPoint = procToGlobalFZmap[faceZoneI][globalPointI];
procFZnewPoints[localPoint] =
globalFZnewPoints[globalPointI];
procFZnewPoints[localPoint] = globalFZnewPoints[globalPointI];
}
//- now fix the newPoints points on the globalFaceZones
labelList procFZmeshPoints =
mesh.faceZones()[faceZoneI]().meshPoints();
labelList procFZmeshPoints = mesh.faceZones()[faceZoneI]().meshPoints();
forAll(procFZmeshPoints, pointI)
{
label procPoint = procFZmeshPoints[pointI];
newPoints[procPoint] =
procFZnewPoints[pointI];
}
newPoints[procPoint] = procFZnewPoints[pointI];
}
}
}

View file

@ -28,7 +28,7 @@ IOList<labelList> procToGlobalFZmap
IOobject::AUTO_WRITE
),
mesh.faceZones().size()
);
);
IOList<labelList> pointOnLocalProcPatch
(
@ -46,20 +46,20 @@ IOList<labelList> pointOnLocalProcPatch
//- if they have been read then don't recalculate it
bool globalFaceZoneMappingSet = false;
if(gMax(procToGlobalFZmap[0]) > 0 && gMax(pointOnLocalProcPatch[0]) > 0)
{
{
Info << "Reading procToGlobalFZmap and pointOnLocalProcPatch allowing restart of contact cases"
<< endl;
globalFaceZoneMappingSet = true;
}
else
{
}
else
{
Info << "procToGlobalFZmap and pointOnLocalProcPatch will be calculated as it has not been found" << nl
<< "this message should only appear starting a new analysis" << endl;
}
}
//- this is only needed in a parallel runs
if(Pstream::parRun())
{
{
if(!globalFaceZoneMappingSet)
{
forAll(mesh.faceZones(), faceZoneI)
@ -70,7 +70,9 @@ if(Pstream::parRun())
//- set all slave points to zero because only the master order is used
if(!Pstream::master())
{
globalFZpoints *= 0.0;
}
//- pass points to all procs
reduce(globalFZpoints, sumOp<vectorField>());
@ -93,6 +95,7 @@ if(Pstream::parRun())
}
}
}
//- procToGlobalFZmap now contains the local FZpoint label for each
//- global FZ point label - for each faceZone
@ -123,13 +126,13 @@ if(Pstream::parRun())
}
}
} //- end if(!globalFaceZoneMappingSet)
}
}
//- write to disk to allow restart of cases
//- because it is not possible to calculate the
//- mapping after the meshes have moved
if(!globalFaceZoneMappingSet && Pstream::parRun())
{
{
procToGlobalFZmap.write();
pointOnLocalProcPatch.write();
}
}

View file

@ -15,7 +15,7 @@ solidInterface* solidInterfacePtr(NULL);
solidInterfacePtr->modifyProperties(muf, lambdaf);
gradDU = solidInterfacePtr->grad(DU);
//- solidInterface needs muf and lambdaf to be used for divSigmaExp
//- solidInterface needs muf and lambdaf to be used for divDSigmaExp
if(divDSigmaExpMethod != "surface" && divDSigmaExpMethod != "decompose")
{
FatalError << "divDSigmaExp must be decompose or surface when solidInterface is on"

View file

@ -75,7 +75,7 @@ int main(int argc, char *argv[])
# include "createSolidInterface.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
@ -101,7 +101,9 @@ int main(int argc, char *argv[])
//- reset DU to zero at the start of the time-step if
//- a predictor is not required
if(!predictor)
{
DU = dimensionedVector("zero", dimLength, vector::zero);
}
do //- start of momentum loop
{
@ -114,7 +116,7 @@ int main(int argc, char *argv[])
<< "iteration: " << iCorr
<< ", residual: " << residual
<< endl;
//# include "moveMeshLeastSquares.H"
//# include "moveMeshLeastSquares.H"
# include "moveSolidMesh.H"
contact.correct();
mesh.movePoints(oldMeshPoints);

View file

@ -2,7 +2,7 @@
//- move mesh
//--------------------------------------------------//
if(min(J.internalField()) > 0)
{
{
Info << "Moving mesh using least squares interpolation" << endl;
leastSquaresVolPointInterpolation pointInterpolation(mesh);
@ -31,8 +31,7 @@ if(min(J.internalField()) > 0)
pointInterpolation.interpolate(DU, pointDU);
const vectorField& pointDUI =
pointDU.internalField();
const vectorField& pointDUI = pointDU.internalField();
//- Move mesh
vectorField newPoints = mesh.allPoints();
@ -47,10 +46,10 @@ if(min(J.internalField()) > 0)
mesh.movePoints(newPoints);
mesh.V00();
mesh.moving(false);
}
else
{
}
else
{
FatalErrorIn(args.executable())
<< "Negative Jacobian"
<< exit(FatalError);
}
}

View file

@ -1,5 +1,5 @@
if (runTime.outputTime())
{
{
// FAILS IN PARALLEL - FIX
// Info << "Print contact area" << endl;
//volScalarField ca = contact.contactArea();
@ -52,4 +52,4 @@ if (runTime.outputTime())
//- SHOULD THIS BE A REF TO A TMP...?
volScalarField cPressure = contact.contactPressure();
cPressure.write();
}
}

View file

@ -1,9 +1,15 @@
//- how explicit component of sigma is to be calculated
word divDSigmaExpMethod(mesh.solutionDict().subDict("stressedFoam").lookup("divDSigmaExp"));
Info << divDSigmaExpMethod << " method chosen for calculation of sigmaExp" << endl;
if(divDSigmaExpMethod != "standard" && divDSigmaExpMethod != "surface" && divDSigmaExpMethod != "decompose" && divDSigmaExpMethod != "laplacian")
{
if
(
divDSigmaExpMethod != "standard"
&& divDSigmaExpMethod != "surface"
&& divDSigmaExpMethod != "decompose"
&& divDSigmaExpMethod != "laplacian"
)
{
FatalError << "divDSigmaExp method " << divDSigmaExpMethod << " not found!" << nl
<< "valid methods are:\nstandard\nsurface\ndecompose\nlaplacian"
<< exit(FatalError);
}
}

View file

@ -1,5 +1,5 @@
if (runTime.outputTime())
{
{
volScalarField epsilonEq
(
IOobject
@ -44,6 +44,7 @@ if (runTime.outputTime())
),
tr(sigma)/3.0
);
//- boundary surface pressure
forAll(pressure.boundaryField(), patchi)
{
@ -74,4 +75,4 @@ if (runTime.outputTime())
mesh.movePoints(oldMeshPoints);
runTime.write();
}
}

View file

@ -1,22 +1,22 @@
if(divDSigmaExpMethod == "standard")
{
{
divDSigmaExp = fvc::div
(
mu*gradDU.T() + lambda*(I*tr(gradDU)) - (mu + lambda)*gradDU,
"div(sigma)"
);
}
else if(divDSigmaExpMethod == "surface")
{
}
else if(divDSigmaExpMethod == "surface")
{
divDSigmaExp = fvc::div
(
muf*(mesh.Sf() & fvc::interpolate(gradDU.T()))
+ lambdaf*(mesh.Sf() & I*fvc::interpolate(tr(gradDU)))
- (muf + lambdaf)*(mesh.Sf() & fvc::interpolate(gradDU))
);
}
else if(divDSigmaExpMethod == "decompose")
{
}
else if(divDSigmaExpMethod == "decompose")
{
surfaceTensorField shearGradDU =
((I - n*n)&fvc::interpolate(gradDU));
@ -29,9 +29,9 @@ if(divDSigmaExpMethod == "standard")
+ muf*(shearGradDU&n)
)
);
}
else if(divDSigmaExpMethod == "laplacian")
{
}
else if(divDSigmaExpMethod == "laplacian")
{
divDSigmaExp =
- fvc::laplacian(mu + lambda, DU, "laplacian(DDU,DU)")
+ fvc::div
@ -40,8 +40,8 @@ if(divDSigmaExpMethod == "standard")
+ lambda*(I*tr(gradDU)),
"div(sigma)"
);
}
else
{
}
else
{
FatalError << "divDSigmaExp method " << divDSigmaExpMethod << " not found!" << endl;
}
}

View file

@ -2,7 +2,7 @@
//- sigma explicit large strain explicit terms
//----------------------------------------------------//
if(divDSigmaLargeStrainExpMethod == "standard")
{
{
divDSigmaLargeStrainExp =
fvc::div
(
@ -11,9 +11,9 @@ if(divDSigmaLargeStrainExpMethod == "standard")
+ ((sigma + DSigma) & DF.T()),
"div(sigma)"
);
}
else if(divDSigmaLargeStrainExpMethod == "surface")
{
}
else if(divDSigmaLargeStrainExpMethod == "surface")
{
divDSigmaLargeStrainExp =
fvc::div
(
@ -22,13 +22,13 @@ if(divDSigmaLargeStrainExpMethod == "standard")
+ (mesh.Sf() & fvc::interpolate( sigma & DF.T() ))
+ (mesh.Sf() & fvc::interpolate(DSigma & DF.T() ))
);
}
else
{
}
else
{
FatalError
<< "divDSigmaLargeStrainExp not found!"
<< exit(FatalError);
}
}
//- relax large strain component
divDSigmaLargeStrainExp.relax();

View file

@ -69,5 +69,4 @@ FieldField<Field, vector> extraVecs(ptc.size());
curExtraVectors.setSize(nFacesAroundPoint);
}
}

View file

@ -91,7 +91,8 @@ FieldField<Field, scalar> w(ptc.size());
// Update coupled boundaries
// Work-around for cyclic parallels.
/*if (Pstream::parRun() && !mesh.parallelData().cyclicParallel())
/*
if (Pstream::parRun() && !mesh.parallelData().cyclicParallel())
{
forAll (volPointSumWeights.boundaryField(), patchI)
{
@ -111,7 +112,8 @@ FieldField<Field, scalar> w(ptc.size());
);
}
}
}*/
}
*/
// Re-scale the weights for the current point
forAll (ptc, pointI)

View file

@ -23,7 +23,7 @@ philipc
//- this is only needed in a parallel runs
if(Pstream::parRun())
{
{
//***** FIX INCORRECT POINT ON PATCHES WITH FACEZONE *****//
contactPatchPairList& contacts = contact;
@ -33,9 +33,13 @@ if(Pstream::parRun())
label slaveID = contacts[contactI].slavePatch().index();
primitivePatchInterpolation masterInterpolator
(mesh.boundaryMesh()[masterID]);
(
mesh.boundaryMesh()[masterID]
);
primitivePatchInterpolation slaveInterpolator
(mesh.boundaryMesh()[slaveID]);
(
mesh.boundaryMesh()[slaveID]
);
//- DU must be interpolated to the vertices, this ignores the faceZone
//- points with no DU (unlike volPointInterpolation)
@ -65,23 +69,17 @@ if(Pstream::parRun())
{
label pointGlobalLabel = masterPointLabels[pointI];
newPoints[pointGlobalLabel] =
oldMasterPoints[pointI]
+
correctMasterPointDU[pointI];
oldMasterPoints[pointI] + correctMasterPointDU[pointI];
}
forAll(slavePointLabels, pointI)
{
label pointGlobalLabel = slavePointLabels[pointI];
newPoints[pointGlobalLabel] =
oldSlavePoints[pointI]
+
correctSlavePointDU[pointI];
oldSlavePoints[pointI] + correctSlavePointDU[pointI];
}
}
//***** NOW FIX AND SYNCHRONISE ALL THE FACEZONE POINTS *****//
forAll(mesh.faceZones(), faceZoneI)
@ -117,8 +115,7 @@ if(Pstream::parRun())
{
label procPoint =
mesh.faceZones()[faceZoneI]().meshPoints()[localPoint];
globalFZnewPoints[globalPointI] =
newPoints[procPoint];
globalFZnewPoints[globalPointI] = newPoints[procPoint];
pointNumProcs[globalPointI] = 1;
}
}
@ -141,20 +138,16 @@ if(Pstream::parRun())
forAll(globalFZnewPoints, globalPointI)
{
label localPoint = procToGlobalFZmap[faceZoneI][globalPointI];
procFZnewPoints[localPoint] =
globalFZnewPoints[globalPointI];
procFZnewPoints[localPoint] = globalFZnewPoints[globalPointI];
}
//- now fix the newPoints points on the globalFaceZones
labelList procFZmeshPoints =
mesh.faceZones()[faceZoneI]().meshPoints();
labelList procFZmeshPoints = mesh.faceZones()[faceZoneI]().meshPoints();
forAll(procFZmeshPoints, pointI)
{
label procPoint = procFZmeshPoints[pointI];
newPoints[procPoint] =
procFZnewPoints[pointI];
}
newPoints[procPoint] = procFZnewPoints[pointI];
}
}
}

View file

@ -28,7 +28,7 @@ IOList<labelList> procToGlobalFZmap
IOobject::AUTO_WRITE
),
mesh.faceZones().size()
);
);
IOList<labelList> pointOnLocalProcPatch
(
@ -46,20 +46,20 @@ IOList<labelList> pointOnLocalProcPatch
//- if they have been read then don't recalculate it
bool globalFaceZoneMappingSet = false;
if(gMax(procToGlobalFZmap[0]) > 0 && gMax(pointOnLocalProcPatch[0]) > 0)
{
{
Info << "Reading procToGlobalFZmap and pointOnLocalProcPatch allowing restart of contact cases"
<< endl;
globalFaceZoneMappingSet = true;
}
else
{
}
else
{
Info << "procToGlobalFZmap and pointOnLocalProcPatch will be calculated as it has not been found" << nl
<< "this message should only appear starting a new analysis" << endl;
}
}
//- this is only needed in a parallel runs
if(Pstream::parRun())
{
{
if(!globalFaceZoneMappingSet)
{
forAll(mesh.faceZones(), faceZoneI)
@ -70,7 +70,9 @@ if(Pstream::parRun())
//- set all slave points to zero because only the master order is used
if(!Pstream::master())
{
globalFZpoints *= 0.0;
}
//- pass points to all procs
reduce(globalFZpoints, sumOp<vectorField>());
@ -93,8 +95,6 @@ if(Pstream::parRun())
}
}
}
//- procToGlobalFZmap now contains the local FZpoint label for each
//- global FZ point label - for each faceZone
//- check what points are on the current proc patch
pointOnLocalProcPatch[faceZoneI].setSize(globalFZpoints.size(), 0);
@ -123,13 +123,13 @@ if(Pstream::parRun())
}
}
} //- end if(!globalFaceZoneMappingSet)
}
}
//- write to disk to allow restart of cases
//- because it is not possible to calculate the
//- mapping after the meshes have moved
if(!globalFaceZoneMappingSet)
{
{
procToGlobalFZmap.write();
pointOnLocalProcPatch.write();
}
}

View file

@ -82,7 +82,7 @@ int main(int argc, char *argv[])
# include "createGlobalToLocalFaceZonePointMap.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
@ -118,7 +118,7 @@ int main(int argc, char *argv[])
<< "iteration: " << iCorr
<< ", residual: " << residual
<< endl;
//# include "moveMeshLeastSquares.H"
//# include "moveMeshLeastSquares.H"
# include "moveSolidMeshForContact.H"
contact.correct();
mesh.movePoints(oldMeshPoints);
@ -135,7 +135,6 @@ int main(int argc, char *argv[])
fvm::laplacian(2*mu + lambda, DU, "laplacian(DDU,DU)")
+ divDSigmaExp
+ divDSigmaLargeStrainExp
);
solverPerf = DUEqn.solve();

View file

@ -1,15 +1,15 @@
if(moveMeshMethod == "inverseDistance")
{
{
# include "moveMeshInverseDistance.H"
}
else if(moveMeshMethod == "leastSquares")
{
}
else if(moveMeshMethod == "leastSquares")
{
# include "moveMeshLeastSquares.H"
}
else
{
}
else
{
FatalError << "move mesh method " << moveMeshMethod << " not recognised" << nl
<< "available methods are:" << nl
<< "inverseDistance" << nl
<< "leastSquares" << exit(FatalError);
}
}

View file

@ -2,7 +2,7 @@
//- move mesh
//--------------------------------------------------//
if(min(J.internalField()) > 0)
{
{
Info << "Move solid mesh using inverse distance interpolation" << endl;
// Create point mesh
@ -41,8 +41,7 @@ if(min(J.internalField()) > 0)
//pointDU.write();
const vectorField& pointDUI =
pointDU.internalField();
const vectorField& pointDUI = pointDU.internalField();
// Move mesh
vectorField newPoints = mesh.allPoints();
@ -57,10 +56,10 @@ if(min(J.internalField()) > 0)
mesh.movePoints(newPoints);
mesh.V00();
mesh.moving(false);
}
else
{
}
else
{
FatalErrorIn(args.executable())
<< "Negative Jacobian"
<< exit(FatalError);
}
}

View file

@ -2,7 +2,7 @@
//- move mesh
//--------------------------------------------------//
if(min(J.internalField()) > 0)
{
{
Info << "Moving mesh using least squares interpolation" << endl;
leastSquaresVolPointInterpolation pointInterpolation(mesh);
@ -31,8 +31,7 @@ if(min(J.internalField()) > 0)
pointInterpolation.interpolate(DU, pointDU);
const vectorField& pointDUI =
pointDU.internalField();
const vectorField& pointDUI = pointDU.internalField();
//- Move mesh
vectorField newPoints = mesh.allPoints();
@ -47,10 +46,10 @@ if(min(J.internalField()) > 0)
mesh.movePoints(newPoints);
mesh.V00();
mesh.moving(false);
}
else
{
}
else
{
FatalErrorIn(args.executable())
<< "Negative Jacobian"
<< exit(FatalError);
}
}

View file

@ -7,7 +7,8 @@ pointVectorField& pf = pointDU;
// Do the correction
//GeometricField<Type, pointPatchField, pointMesh> pfCorr
/*pointVectorField pfCorr
/*
pointVectorField pfCorr
(
IOobject
(
@ -23,7 +24,8 @@ pointVectorField& pf = pointDU;
//dimensioned<Type>("zero", pf.dimensions(), pTraits<Type>::zero),
dimensionedVector("zero", pf.dimensions(), vector::zero),
pf.boundaryField().types()
);*/
);
*/
pointVectorField pfCorr
(
@ -38,7 +40,7 @@ pointVectorField pfCorr
pMesh,
dimensionedVector("vector", dimLength, vector::zero),
"calculated"
);
);
//const labelList& ptc = boundaryPoints();
#include "findBoundaryPoints.H"
@ -96,25 +98,29 @@ forAll (ptc, pointI)
}
// Update coupled boundaries
/*forAll (pfCorr.boundaryField(), patchI)
/*
forAll (pfCorr.boundaryField(), patchI)
{
if (pfCorr.boundaryField()[patchI].coupled())
{
pfCorr.boundaryField()[patchI].initAddField();
}
}*/
}
*/
/*forAll (pfCorr.boundaryField(), patchI)
/*
forAll (pfCorr.boundaryField(), patchI)
{
if (pfCorr.boundaryField()[patchI].coupled())
{
pfCorr.boundaryField()[patchI].addField(pfCorr.internalField());
}
}*/
}
*/
//Info << "pfCorr: " << pfCorr << endl;
pfCorr.correctBoundaryConditions();
//Info << "pfCorr: " << pfCorr << endl;
pfCorr.correctBoundaryConditions();
//pfCorr.write();

View file

@ -1,5 +1,5 @@
if (runTime.outputTime())
{
{
// FAILS IN PARALLEL - FIX
// Info << "Print contact area" << endl;
//volScalarField ca = contact.contactArea();
@ -52,4 +52,4 @@ if (runTime.outputTime())
//- SHOULD THIS BE A REF TO A TMP...?
volScalarField cPressure = contact.contactPressure();
cPressure.write();
}
}

View file

@ -1,9 +1,15 @@
//- how explicit component of sigma is to be calculated
word divDSigmaExpMethod(mesh.solutionDict().subDict("stressedFoam").lookup("divDSigmaExp"));
Info << divDSigmaExpMethod << " method chosen for calculation of DSigmaExp" << endl;
if(divDSigmaExpMethod != "standard" && divDSigmaExpMethod != "surface" && divDSigmaExpMethod != "decompose" && divDSigmaExpMethod != "laplacian")
{
if
(
divDSigmaExpMethod != "standard"
&& divDSigmaExpMethod != "surface"
&& divDSigmaExpMethod != "decompose"
&& divDSigmaExpMethod != "laplacian"
)
{
FatalError << "divDSigmaExp method " << divDSigmaExpMethod << " not found!" << nl
<< "valid methods are:\nstandard\nsurface\ndecompose\nlaplacian"
<< exit(FatalError);
}
}

View file

@ -1,5 +1,5 @@
if (runTime.outputTime())
{
{
volScalarField epsilonEq
(
IOobject
@ -33,4 +33,4 @@ if (runTime.outputTime())
<< endl;
runTime.write();
}
}

View file

@ -1,24 +1,23 @@
if(divSigmaExpMethod == "standard")
{
{
divSigmaExp = fvc::div
(
mu*gradU.T() + lambda*(I*tr(gradU)) - (mu + lambda)*gradU,
"div(sigma)"
);
}
else if(divSigmaExpMethod == "surface")
{
}
else if(divSigmaExpMethod == "surface")
{
divSigmaExp = fvc::div
(
muf*(mesh.Sf() & fvc::interpolate(gradU.T()))
+ lambdaf*(mesh.Sf() & I*fvc::interpolate(tr(gradU)))
- (muf + lambdaf)*(mesh.Sf() & fvc::interpolate(gradU))
);
}
else if(divSigmaExpMethod == "decompose")
{
surfaceTensorField shearGradU =
((I - n*n)&fvc::interpolate(gradU));
}
else if(divSigmaExpMethod == "decompose")
{
surfaceTensorField shearGradU = ((I - n*n)&fvc::interpolate(gradU));
divSigmaExp = fvc::div
(
@ -29,9 +28,9 @@ if(divSigmaExpMethod == "standard")
+ muf*(shearGradU&n)
)
);
}
else if(divSigmaExpMethod == "expLaplacian")
{
}
else if(divSigmaExpMethod == "expLaplacian")
{
divSigmaExp =
- fvc::laplacian(mu + lambda, U, "laplacian(U,U)")
+ fvc::div
@ -40,8 +39,8 @@ if(divSigmaExpMethod == "standard")
+ lambda*(I*tr(gradU)),
"div(sigma)"
);
}
else
{
}
else
{
FatalError << "divSigmaExp method " << divSigmaExpMethod << " not found!" << endl;
}
}

View file

@ -23,7 +23,7 @@ philipc
//- this is only needed in a parallel runs
if(Pstream::parRun())
{
{
//***** FIX INCORRECT POINT ON PATCHES WITH FACEZONE *****//
contactPatchPairList& contacts = contact;
@ -33,9 +33,13 @@ if(Pstream::parRun())
label slaveID = contacts[contactI].slavePatch().index();
primitivePatchInterpolation masterInterpolator
(mesh.boundaryMesh()[masterID]);
(
mesh.boundaryMesh()[masterID]
);
primitivePatchInterpolation slaveInterpolator
(mesh.boundaryMesh()[slaveID]);
(
mesh.boundaryMesh()[slaveID]
);
//- U must be interpolated to the vertices, this ignores the faceZone
//- points with no U (unlike volPointInterpolation)
@ -65,23 +69,17 @@ if(Pstream::parRun())
{
label pointGlobalLabel = masterPointLabels[pointI];
newPoints[pointGlobalLabel] =
oldMasterPoints[pointI]
+
correctMasterPointU[pointI];
oldMasterPoints[pointI] + correctMasterPointU[pointI];
}
forAll(slavePointLabels, pointI)
{
label pointGlobalLabel = slavePointLabels[pointI];
newPoints[pointGlobalLabel] =
oldSlavePoints[pointI]
+
correctSlavePointU[pointI];
oldSlavePoints[pointI] + correctSlavePointU[pointI];
}
}
//***** NOW FIX AND SYNCHRONISE ALL THE FACEZONE POINTS *****//
forAll(mesh.faceZones(), faceZoneI)
@ -117,8 +115,7 @@ if(Pstream::parRun())
{
label procPoint =
mesh.faceZones()[faceZoneI]().meshPoints()[localPoint];
globalFZnewPoints[globalPointI] =
newPoints[procPoint];
globalFZnewPoints[globalPointI] = newPoints[procPoint];
pointNumProcs[globalPointI] = 1;
}
}
@ -141,20 +138,16 @@ if(Pstream::parRun())
forAll(globalFZnewPoints, globalPointI)
{
label localPoint = procToGlobalFZmap[faceZoneI][globalPointI];
procFZnewPoints[localPoint] =
globalFZnewPoints[globalPointI];
procFZnewPoints[localPoint] = globalFZnewPoints[globalPointI];
}
//- now fix the newPoints points on the globalFaceZones
labelList procFZmeshPoints =
mesh.faceZones()[faceZoneI]().meshPoints();
labelList procFZmeshPoints = mesh.faceZones()[faceZoneI]().meshPoints();
forAll(procFZmeshPoints, pointI)
{
label procPoint = procFZmeshPoints[pointI];
newPoints[procPoint] =
procFZnewPoints[pointI];
}
newPoints[procPoint] = procFZnewPoints[pointI];
}
}
}

View file

@ -28,7 +28,7 @@ IOList<labelList> procToGlobalFZmap
IOobject::AUTO_WRITE
),
mesh.faceZones().size()
);
);
IOList<labelList> pointOnLocalProcPatch
(
@ -46,20 +46,20 @@ IOList<labelList> pointOnLocalProcPatch
//- if they have been read then don't recalculate it
bool globalFaceZoneMappingSet = false;
if(gMax(procToGlobalFZmap[0]) > 0 && gMax(pointOnLocalProcPatch[0]) > 0)
{
{
Info << "Reading procToGlobalFZmap and pointOnLocalProcPatch allowing restart of contact cases"
<< endl;
globalFaceZoneMappingSet = true;
}
else
{
}
else
{
Info << "procToGlobalFZmap and pointOnLocalProcPatch will be calculated as it has not been found" << nl
<< "this message should only appear starting a new analysis" << endl;
}
}
//- this is only needed in a parallel runs
if(Pstream::parRun())
{
{
if(!globalFaceZoneMappingSet)
{
forAll(mesh.faceZones(), faceZoneI)
@ -70,7 +70,9 @@ if(Pstream::parRun())
//- set all slave points to zero because only the master order is used
if(!Pstream::master())
{
globalFZpoints *= 0.0;
}
//- pass points to all procs
reduce(globalFZpoints, sumOp<vectorField>());
@ -93,8 +95,6 @@ if(Pstream::parRun())
}
}
}
//- procToGlobalFZmap now contains the local FZpoint label for each
//- global FZ point label - for each faceZone
//- check what points are on the current proc patch
pointOnLocalProcPatch[faceZoneI].setSize(globalFZpoints.size(), 0);
@ -123,13 +123,13 @@ if(Pstream::parRun())
}
}
} //- end if(!globalFaceZoneMappingSet)
}
}
//- write to disk to allow restart of cases
//- because it is not possible to calculate the
//- mapping after the meshes have moved
if(!globalFaceZoneMappingSet)
{
{
procToGlobalFZmap.write();
pointOnLocalProcPatch.write();
}
}

View file

@ -78,7 +78,7 @@ int main(int argc, char *argv[])
# include "createGlobalToLocalFaceZonePointMap.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
@ -121,7 +121,7 @@ int main(int argc, char *argv[])
<< "iteration: " << iCorr
<< ", residual: " << residual
<< endl;
//# include "moveMeshLeastSquares.H"
//# include "moveMeshLeastSquares.H"
# include "moveSolidMesh.H"
contact.correct();
mesh.movePoints(oldMeshPoints);
@ -187,10 +187,10 @@ int main(int argc, char *argv[])
# include "writeFields.H"
//# include "moveMeshLeastSquares.H"
//# include "moveSolidMesh.H"
//# include "printContactResults.H"
//mesh.movePoints(oldMeshPoints);
//# include "moveMeshLeastSquares.H"
//# include "moveSolidMesh.H"
//# include "printContactResults.H"
// mesh.movePoints(oldMeshPoints);
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"

View file

@ -2,7 +2,7 @@
//- move mesh
//--------------------------------------------------//
if(min(J.internalField()) > 0)
{
{
Info << "Moving mesh using least squares interpolation" << endl;
leastSquaresVolPointInterpolation pointInterpolation(mesh);
@ -31,8 +31,7 @@ if(min(J.internalField()) > 0)
pointInterpolation.interpolate(DU, pointDU);
const vectorField& pointDUI =
pointDU.internalField();
const vectorField& pointDUI = pointDU.internalField();
//- Move mesh
vectorField newPoints = mesh.allPoints();
@ -47,10 +46,10 @@ if(min(J.internalField()) > 0)
mesh.movePoints(newPoints);
mesh.V00();
mesh.moving(false);
}
else
{
}
else
{
FatalErrorIn(args.executable())
<< "Negative Jacobian"
<< exit(FatalError);
}
}

View file

@ -1,5 +1,5 @@
if (runTime.outputTime())
{
{
// FAILS IN PARALLEL - FIX
// Info << "Print contact area" << endl;
//volScalarField ca = contact.contactArea();
@ -52,4 +52,4 @@ if (runTime.outputTime())
//- SHOULD THIS BE A REF TO A TMP...?
volScalarField cPressure = contact.contactPressure();
cPressure.write();
}
}

View file

@ -1,5 +1,5 @@
if (runTime.outputTime())
{
{
volScalarField epsilonEq
(
IOobject
@ -33,4 +33,4 @@ if (runTime.outputTime())
<< endl;
runTime.write();
}
}

View file

@ -1,24 +1,23 @@
if(divSigmaExpMethod == "standard")
{
{
divSigmaExp = fvc::div
(
mu*gradU.T() + lambda*(I*tr(gradU)) - (mu + lambda)*gradU,
"div(sigma)"
);
}
else if(divSigmaExpMethod == "surface")
{
}
else if(divSigmaExpMethod == "surface")
{
divSigmaExp = fvc::div
(
muf*(mesh.Sf() & fvc::interpolate(gradU.T()))
+ lambdaf*(mesh.Sf() & I*fvc::interpolate(tr(gradU)))
- (muf + lambdaf)*(mesh.Sf() & fvc::interpolate(gradU))
);
}
else if(divSigmaExpMethod == "decompose")
{
surfaceTensorField shearGradU =
((I - n*n)&fvc::interpolate(gradU));
}
else if(divSigmaExpMethod == "decompose")
{
surfaceTensorField shearGradU = ((I - n*n)&fvc::interpolate(gradU));
divSigmaExp = fvc::div
(
@ -29,9 +28,9 @@ if(divSigmaExpMethod == "standard")
+ muf*(shearGradU&n)
)
);
}
else if(divSigmaExpMethod == "expLaplacian")
{
}
else if(divSigmaExpMethod == "expLaplacian")
{
divSigmaExp =
- fvc::laplacian(mu + lambda, U, "laplacian(DU,U)")
+ fvc::div
@ -40,8 +39,8 @@ if(divSigmaExpMethod == "standard")
+ lambda*(I*tr(gradU)),
"div(sigma)"
);
}
else
{
}
else
{
FatalError << "divSigmaExp method " << divSigmaExpMethod << " not found!" << endl;
}
}

View file

@ -1,9 +1,15 @@
//- how explicit component of sigma is to be calculated
word divSigmaExpMethod(mesh.solutionDict().subDict("stressedFoam").lookup("divSigmaExp"));
Info << "Selecting divSigmaExp calculation method " << divSigmaExpMethod << endl;
if(divSigmaExpMethod != "standard" && divSigmaExpMethod != "surface" && divSigmaExpMethod != "decompose" && divSigmaExpMethod != "laplacian")
{
if
(
divSigmaExpMethod != "standard"
&& divSigmaExpMethod != "surface"
&& divSigmaExpMethod != "decompose"
&& divSigmaExpMethod != "laplacian"
)
{
FatalError << "divSigmaExp method " << divSigmaExpMethod << " not found!" << nl
<< "valid methods are:\nstandard\nsurface\ndecompose\nlaplacian"
<< exit(FatalError);
}
}

View file

@ -1,5 +1,5 @@
if (runTime.outputTime())
{
{
volScalarField epsilonEq
(
IOobject
@ -33,4 +33,4 @@ if (runTime.outputTime())
<< endl;
runTime.write();
}
}

View file

@ -1,37 +1,37 @@
if(divDSigmaExpMethod == "standard")
{
{
divDSigmaExp = fvc::div
(
mu*gradDU.T() + lambda*(I*tr(gradDU)) - (mu + lambda)*gradDU,
"div(sigma)"
);
}
else if(divDSigmaExpMethod == "surface")
{
}
else if(divDSigmaExpMethod == "surface")
{
divDSigmaExp = fvc::div
(
muf*(mesh.Sf() & fvc::interpolate(gradDU.T()))
+ lambdaf*(mesh.Sf() & I*fvc::interpolate(tr(gradDU)))
- (muf + lambdaf)*(mesh.Sf() & fvc::interpolate(gradDU))
);
}
else if(divDSigmaExpMethod == "decompose")
{
surfaceTensorField shearGradDU =
((I - n*n)&fvc::interpolate(gradDU));
}
else if(divDSigmaExpMethod == "decompose")
{
surfaceTensorField shearGradDU = ((I - n*n)&fvc::interpolate(gradDU));
divDSigmaExp = fvc::div
(
mesh.magSf()
*(
*
(
- (muf + lambdaf)*(fvc::snGrad(DU)&(I - n*n))
+ lambdaf*tr(shearGradDU&(I - n*n))*n
+ muf*(shearGradDU&n)
)
);
}
else if(divDSigmaExpMethod == "laplacian")
{
}
else if(divDSigmaExpMethod == "laplacian")
{
divDSigmaExp =
- fvc::laplacian(mu + lambda, DU, "laplacian(DDU,DU)")
+ fvc::div
@ -40,8 +40,8 @@ if(divDSigmaExpMethod == "standard")
+ lambda*(I*tr(gradDU)),
"div(sigma)"
);
}
else
{
}
else
{
FatalError << "divDSigmaExp method " << divDSigmaExpMethod << " not found!" << endl;
}
}

View file

@ -1,9 +1,15 @@
//- how explicit component of sigma is to be calculated
word divDSigmaExpMethod(mesh.solutionDict().subDict("stressedFoam").lookup("divDSigmaExp"));
Info << "Selecting divDSigmaExp calculation method " << divDSigmaExpMethod << endl;
if(divDSigmaExpMethod != "standard" && divDSigmaExpMethod != "surface" && divDSigmaExpMethod != "decompose" && divDSigmaExpMethod != "laplacian")
{
if
(
divDSigmaExpMethod != "standard"
&& divDSigmaExpMethod != "surface"
&& divDSigmaExpMethod != "decompose"
&& divDSigmaExpMethod != "laplacian"
)
{
FatalError << "divDSigmaExp method " << divDSigmaExpMethod << " not found!" << nl
<< "valid methods are:\nstandard\nsurface\ndecompose\nlaplacian"
<< exit(FatalError);
}
}

View file

@ -1,5 +1,5 @@
if (runTime.outputTime())
{
{
volScalarField epsilonEq
(
IOobject
@ -33,4 +33,4 @@ if (runTime.outputTime())
<< endl;
runTime.write();
}
}

View file

@ -2,15 +2,16 @@
label leftPatchID = mesh.boundaryMesh().findPatchID("leftClamp");
if(leftPatchID == -1)
{
{
FatalError << "Cannot find patch left for calculating force" << endl;
}
}
//- calculate force in x direction on leftClamp patch
scalar leftForce = gSum(
vector(1, 0, 0) &
(mesh.boundary()[leftPatchID].Sf() & sigma.boundaryField()[leftPatchID])
);
scalar leftForce = gSum
(
vector(1, 0, 0)
& (mesh.boundary()[leftPatchID].Sf() & sigma.boundaryField()[leftPatchID])
);
//- patchIntegrate utility integrates it this way but this is worng because the sigma tensor should
//- be dotted with the surface normal to give the actual traction/force
@ -23,13 +24,13 @@ scalar leftForce = gSum(
vector gaugeU1 = vector::zero;
vector gaugeU2 = vector::zero;
if(gaugeFaceID1 != -1)
{
{
gaugeU1 = U.boundaryField()[gaugeFacePatchID1][gaugeFaceID1];
}
}
if(gaugeFaceID2 != -1)
{
{
gaugeU2 = U.boundaryField()[gaugeFacePatchID2][gaugeFaceID2];
}
}
//- reduce across procs
reduce(gaugeU1, sumOp<vector>());
@ -42,7 +43,7 @@ scalar gaugeDisp = mag(gaugeU1 - gaugeU2);
//- write to file
if(Pstream::master())
{
{
OFstream& forceDispFile = *filePtr;
forceDispFile << 1000*gaugeDisp << "\t" << -1*leftForce << endl;
}
}

View file

@ -1,7 +1,9 @@
{
forAll(mesh.boundary(), patchID)
{
if(U.boundaryField()[patchID].type()
if
(
U.boundaryField()[patchID].type()
== solidDirectionMixedFvPatchVectorField::typeName
)
{

View file

@ -83,8 +83,9 @@ int main(int argc, char *argv[])
fvm::d2dt2(rho, U)
==
fvm::laplacian(2*mu + lambda, U, "laplacian(DU,U)")
+ fvc::div(
-( (mu + lambda) * gradU )
+ fvc::div
(
- ( (mu + lambda) * gradU )
+ ( mu * gradU.T() )
+ ( mu * (gradU & gradU.T()) )
+ ( lambda * tr(gradU) * I )

View file

@ -2,7 +2,7 @@
//- move mesh
//--------------------------------------------------//
if(min(J.internalField()) > 0)
{
{
Info << "Moving mesh using least squares interpolation" << endl;
leastSquaresVolPointInterpolation pointInterpolation(mesh);
@ -31,8 +31,7 @@ if(min(J.internalField()) > 0)
pointInterpolation.interpolate(U, pointU);
const vectorField& pointUI =
pointU.internalField();
const vectorField& pointUI = pointU.internalField();
//- Move mesh
vectorField newPoints = mesh.allPoints();
@ -47,10 +46,10 @@ if(min(J.internalField()) > 0)
mesh.movePoints(newPoints);
mesh.V00();
mesh.moving(false);
}
else
{
}
else
{
FatalErrorIn(args.executable())
<< "Negative Jacobian"
<< exit(FatalError);
}
}

View file

@ -1,5 +1,5 @@
if (runTime.outputTime())
{
{
volScalarField epsilonEq
(
IOobject
@ -95,10 +95,10 @@ if (runTime.outputTime())
//- move mesh for visualisation and move it back after writing
vectorField oldPoints = mesh.allPoints();
#include "moveMeshLeastSquares.H"
# include "moveMeshLeastSquares.H"
runTime.write();
//- move mesh back
mesh.movePoints(oldPoints);
}
}

View file

@ -1,37 +1,37 @@
if(divDSigmaExpMethod == "standard")
{
{
divDSigmaExp = fvc::div
(
mu*gradDU.T() + lambda*(I*tr(gradDU)) - (mu + lambda)*gradDU,
"div(sigma)"
);
}
else if(divDSigmaExpMethod == "surface")
{
}
else if(divDSigmaExpMethod == "surface")
{
divDSigmaExp = fvc::div
(
muf*(mesh.Sf() & fvc::interpolate(gradDU.T()))
+ lambdaf*(mesh.Sf() & I*fvc::interpolate(tr(gradDU)))
- (muf + lambdaf)*(mesh.Sf() & fvc::interpolate(gradDU))
);
}
else if(divDSigmaExpMethod == "decompose")
{
surfaceTensorField shearGradDU =
((I - n*n)&fvc::interpolate(gradDU));
}
else if(divDSigmaExpMethod == "decompose")
{
surfaceTensorField shearGradDU = ((I - n*n)&fvc::interpolate(gradDU));
divDSigmaExp = fvc::div
(
mesh.magSf()
*(
*
(
- (muf + lambdaf)*(fvc::snGrad(DU)&(I - n*n))
+ lambdaf*tr(shearGradDU&(I - n*n))*n
+ muf*(shearGradDU&n)
)
);
}
else if(divDSigmaExpMethod == "laplacian")
{
}
else if(divDSigmaExpMethod == "laplacian")
{
divDSigmaExp =
- fvc::laplacian(mu + lambda, DU, "laplacian(DDU,DU)")
+ fvc::div
@ -40,8 +40,8 @@ if(divDSigmaExpMethod == "standard")
+ lambda*(I*tr(gradDU)),
"div(sigma)"
);
}
else
{
}
else
{
FatalError << "divDSigmaExp method " << divDSigmaExpMethod << " not found!" << endl;
}
}

View file

@ -2,7 +2,7 @@
//- sigma explicit large strain explicit terms
//----------------------------------------------------//
if(divDSigmaLargeStrainExpMethod == "standard")
{
{
divDSigmaLargeStrainExp =
fvc::div
(
@ -11,9 +11,9 @@ if(divDSigmaLargeStrainExpMethod == "standard")
+ ((sigma + DSigma) & gradDU),
"div(sigma)"
);
}
else if(divDSigmaLargeStrainExpMethod == "surface")
{
}
else if(divDSigmaLargeStrainExpMethod == "surface")
{
divDSigmaLargeStrainExp =
fvc::div
(
@ -21,13 +21,13 @@ if(divDSigmaLargeStrainExpMethod == "standard")
+ 0.5*lambdaf * (mesh.Sf() & (fvc::interpolate(gradDU && gradDU)*I))
+ (mesh.Sf() & fvc::interpolate( (sigma + DSigma) & gradDU ))
);
}
else
{
}
else
{
FatalError
<< "divDSigmaLargeStrainMethod not found!"
<< exit(FatalError);
}
}
//- relax
divDSigmaLargeStrainExp.relax();

View file

@ -69,5 +69,4 @@ FieldField<Field, vector> extraVecs(ptc.size());
curExtraVectors.setSize(nFacesAroundPoint);
}
}

View file

@ -91,7 +91,8 @@ FieldField<Field, scalar> w(ptc.size());
// Update coupled boundaries
// Work-around for cyclic parallels.
/*if (Pstream::parRun() && !mesh.parallelData().cyclicParallel())
/*
if (Pstream::parRun() && !mesh.parallelData().cyclicParallel())
{
forAll (volPointSumWeights.boundaryField(), patchI)
{
@ -111,7 +112,8 @@ FieldField<Field, scalar> w(ptc.size());
);
}
}
}*/
}
*/
// Re-scale the weights for the current point
forAll (ptc, pointI)

View file

@ -1,13 +1,13 @@
if(moveMeshMethod == "inverseDistance")
{
{
# include "moveMeshInverseDistance.H"
}
else if(moveMeshMethod == "leastSquares")
{
}
else if(moveMeshMethod == "leastSquares")
{
# include "moveMeshLeastSquares.H"
}
else
{
}
else
{
FatalError << "move mesh method " << moveMeshMethod << " not recognised" << nl
<< "available methods are:" << nl
<< "inverseDistance" << nl

View file

@ -2,7 +2,7 @@
//- move mesh
//--------------------------------------------------//
if(min(J.internalField()) > 0)
{
{
Info << "Move solid mesh using inverse distance interpolation" << endl;
// Create point mesh
@ -36,10 +36,9 @@ if(min(J.internalField()) > 0)
//- correct edge interpolation
//- this is the stuff from edgeCorrectedVolPointInterpolation but
//- that class no longer works
# include "performEdgeCorrectedVolPointInterpolation.H"
# include "performEdgeCorrectedVolPointInterpolation.H"
const vectorField& pointDUI =
pointDU.internalField();
const vectorField& pointDUI = pointDU.internalField();
//- see the effect of correctBCs
@ -56,10 +55,10 @@ if(min(J.internalField()) > 0)
mesh.movePoints(newPoints);
mesh.V00();
mesh.moving(false);
}
else
{
}
else
{
FatalErrorIn(args.executable())
<< "Negative Jacobian"
<< exit(FatalError);
}
}

View file

@ -2,7 +2,7 @@
//- move mesh
//--------------------------------------------------//
if(min(J.internalField()) > 0)
{
{
Info << "Moving mesh using least squares interpolation" << endl;
leastSquaresVolPointInterpolation pointInterpolation(mesh);
@ -31,8 +31,7 @@ if(min(J.internalField()) > 0)
pointInterpolation.interpolate(DU, pointDU);
const vectorField& pointDUI =
pointDU.internalField();
const vectorField& pointDUI = pointDU.internalField();
//- Move mesh
vectorField newPoints = mesh.allPoints();
@ -47,10 +46,10 @@ if(min(J.internalField()) > 0)
mesh.movePoints(newPoints);
mesh.V00();
mesh.moving(false);
}
else
{
}
else
{
FatalErrorIn(args.executable())
<< "Negative Jacobian"
<< exit(FatalError);
}
}

View file

@ -7,7 +7,8 @@ pointVectorField& pf = pointDU;
// Do the correction
//GeometricField<Type, pointPatchField, pointMesh> pfCorr
/*pointVectorField pfCorr
/*
pointVectorField pfCorr
(
IOobject
(
@ -23,7 +24,8 @@ pointVectorField& pf = pointDU;
//dimensioned<Type>("zero", pf.dimensions(), pTraits<Type>::zero),
dimensionedVector("zero", pf.dimensions(), vector::zero),
pf.boundaryField().types()
);*/
);
*/
pointVectorField pfCorr
(
@ -38,7 +40,7 @@ pointVectorField pfCorr
pMesh,
dimensionedVector("vector", dimLength, vector::zero),
"calculated"
);
);
//const labelList& ptc = boundaryPoints();
#include "findBoundaryPoints.H"
@ -96,25 +98,29 @@ forAll (ptc, pointI)
}
// Update coupled boundaries
/*forAll (pfCorr.boundaryField(), patchI)
/*
forAll (pfCorr.boundaryField(), patchI)
{
if (pfCorr.boundaryField()[patchI].coupled())
{
pfCorr.boundaryField()[patchI].initAddField();
}
}*/
}
*/
/*forAll (pfCorr.boundaryField(), patchI)
/*
forAll (pfCorr.boundaryField(), patchI)
{
if (pfCorr.boundaryField()[patchI].coupled())
{
pfCorr.boundaryField()[patchI].addField(pfCorr.internalField());
}
}*/
}
*/
//Info << "pfCorr: " << pfCorr << endl;
pfCorr.correctBoundaryConditions();
//Info << "pfCorr: " << pfCorr << endl;
pfCorr.correctBoundaryConditions();
//pfCorr.write();

View file

@ -1,12 +1,15 @@
//- the method used to calculate the explicit component of sigma
word divDSigmaExpMethod(mesh.solutionDict().subDict("stressedFoam").lookup("divDSigmaExp"));
Info << "Calculation of divDSigmaExp method: " << divDSigmaExpMethod << endl;
if(divDSigmaExpMethod != "standard"
if
(
divDSigmaExpMethod != "standard"
&& divDSigmaExpMethod != "surface"
&& divDSigmaExpMethod != "decompose"
&& divDSigmaExpMethod != "laplacian")
{
&& divDSigmaExpMethod != "laplacian"
)
{
FatalError << "divDSigmaExp method " << divDSigmaExpMethod << " not found!" << nl
<< "valid methods are:\nstandard\nsurface\ndecompose\nlaplacian"
<< exit(FatalError);
}
}

View file

@ -1,5 +1,5 @@
if (runTime.outputTime())
{
{
volScalarField epsilonEq
(
IOobject
@ -33,4 +33,4 @@ if (runTime.outputTime())
<< endl;
runTime.write();
}
}

View file

@ -1,37 +1,37 @@
if(divDSigmaExpMethod == "standard")
{
{
divDSigmaExp = fvc::div
(
mu*gradDU.T() + lambda*(I*tr(gradDU)) - (mu + lambda)*gradDU,
"div(sigma)"
);
}
else if(divDSigmaExpMethod == "surface")
{
}
else if(divDSigmaExpMethod == "surface")
{
divDSigmaExp = fvc::div
(
muf*(mesh.Sf() & fvc::interpolate(gradDU.T()))
+ lambdaf*(mesh.Sf() & I*fvc::interpolate(tr(gradDU)))
- (muf + lambdaf)*(mesh.Sf() & fvc::interpolate(gradDU))
);
}
else if(divDSigmaExpMethod == "decompose")
{
surfaceTensorField shearGradDU =
((I - n*n)&fvc::interpolate(gradDU));
}
else if(divDSigmaExpMethod == "decompose")
{
surfaceTensorField shearGradDU = ((I - n*n)&fvc::interpolate(gradDU));
divDSigmaExp = fvc::div
(
mesh.magSf()
*(
*
(
- (muf + lambdaf)*(fvc::snGrad(DU)&(I - n*n))
+ lambdaf*tr(shearGradDU&(I - n*n))*n
+ muf*(shearGradDU&n)
)
);
}
else if(divDSigmaExpMethod == "laplacian")
{
}
else if(divDSigmaExpMethod == "laplacian")
{
divDSigmaExp =
- fvc::laplacian(mu + lambda, DU, "laplacian(DDU,DU)")
+ fvc::div
@ -40,8 +40,8 @@ if(divDSigmaExpMethod == "standard")
+ lambda*(I*tr(gradDU)),
"div(sigma)"
);
}
else
{
}
else
{
FatalError << "divDSigmaExp method " << divDSigmaExpMethod << " not found!" << endl;
}
}

View file

@ -2,7 +2,7 @@
//- sigma explicit large strain explicit terms
//----------------------------------------------------//
if(divDSigmaLargeStrainExpMethod == "standard")
{
{
divDSigmaLargeStrainExp =
fvc::div
(
@ -11,9 +11,9 @@ if(divDSigmaLargeStrainExpMethod == "standard")
+ ((sigma + DSigma) & DF.T()),
"div(sigma)"
);
}
else if(divDSigmaLargeStrainExpMethod == "surface")
{
}
else if(divDSigmaLargeStrainExpMethod == "surface")
{
divDSigmaLargeStrainExp =
fvc::div
(
@ -22,13 +22,13 @@ if(divDSigmaLargeStrainExpMethod == "standard")
+ (mesh.Sf() & fvc::interpolate( sigma & DF.T() ))
+ (mesh.Sf() & fvc::interpolate(DSigma & DF.T() ))
);
}
else
{
}
else
{
FatalError
<< "divDSigmaLargeStrainMethod not found!"
<< exit(FatalError);
}
}
//- relax
divDSigmaLargeStrainExp.relax();

View file

@ -69,5 +69,4 @@ FieldField<Field, vector> extraVecs(ptc.size());
curExtraVectors.setSize(nFacesAroundPoint);
}
}

View file

@ -91,7 +91,8 @@ FieldField<Field, scalar> w(ptc.size());
// Update coupled boundaries
// Work-around for cyclic parallels.
/*if (Pstream::parRun() && !mesh.parallelData().cyclicParallel())
/*
if (Pstream::parRun() && !mesh.parallelData().cyclicParallel())
{
forAll (volPointSumWeights.boundaryField(), patchI)
{
@ -111,7 +112,8 @@ FieldField<Field, scalar> w(ptc.size());
);
}
}
}*/
}
*/
// Re-scale the weights for the current point
forAll (ptc, pointI)

View file

@ -1,15 +1,15 @@
if(moveMeshMethod == "inverseDistance")
{
{
# include "moveMeshInverseDistance.H"
}
else if(moveMeshMethod == "leastSquares")
{
}
else if(moveMeshMethod == "leastSquares")
{
# include "moveMeshLeastSquares.H"
}
else
{
}
else
{
FatalError << "move mesh method " << moveMeshMethod << " not recognised" << nl
<< "available methods are:" << nl
<< "inverseDistance" << nl
<< "leastSquares" << exit(FatalError);
}
}

View file

@ -2,7 +2,7 @@
//- move mesh
//--------------------------------------------------//
if(min(J.internalField()) > 0)
{
{
Info << "Move solid mesh using inverse distance interpolation" << endl;
// Create point mesh
@ -41,8 +41,7 @@ if(min(J.internalField()) > 0)
//pointDU.write();
const vectorField& pointDUI =
pointDU.internalField();
const vectorField& pointDUI = pointDU.internalField();
// Move mesh
vectorField newPoints = mesh.allPoints();
@ -57,10 +56,10 @@ if(min(J.internalField()) > 0)
mesh.movePoints(newPoints);
mesh.V00();
mesh.moving(false);
}
else
{
}
else
{
FatalErrorIn(args.executable())
<< "Negative Jacobian"
<< exit(FatalError);
}
}

View file

@ -2,7 +2,7 @@
//- move mesh
//--------------------------------------------------//
if(min(J.internalField()) > 0)
{
{
Info << "Moving mesh using least squares interpolation" << endl;
leastSquaresVolPointInterpolation pointInterpolation(mesh);
@ -31,8 +31,7 @@ if(min(J.internalField()) > 0)
pointInterpolation.interpolate(DU, pointDU);
const vectorField& pointDUI =
pointDU.internalField();
const vectorField& pointDUI = pointDU.internalField();
//- Move mesh
vectorField newPoints = mesh.allPoints();
@ -47,10 +46,10 @@ if(min(J.internalField()) > 0)
mesh.movePoints(newPoints);
mesh.V00();
mesh.moving(false);
}
else
{
}
else
{
FatalErrorIn(args.executable())
<< "Negative Jacobian"
<< exit(FatalError);
}
}

View file

@ -7,7 +7,8 @@ pointVectorField& pf = pointDU;
// Do the correction
//GeometricField<Type, pointPatchField, pointMesh> pfCorr
/*pointVectorField pfCorr
/*
pointVectorField pfCorr
(
IOobject
(
@ -23,7 +24,8 @@ pointVectorField& pf = pointDU;
//dimensioned<Type>("zero", pf.dimensions(), pTraits<Type>::zero),
dimensionedVector("zero", pf.dimensions(), vector::zero),
pf.boundaryField().types()
);*/
);
*/
pointVectorField pfCorr
(
@ -38,7 +40,7 @@ pointVectorField pfCorr
pMesh,
dimensionedVector("vector", dimLength, vector::zero),
"calculated"
);
);
//const labelList& ptc = boundaryPoints();
#include "findBoundaryPoints.H"
@ -96,25 +98,29 @@ forAll (ptc, pointI)
}
// Update coupled boundaries
/*forAll (pfCorr.boundaryField(), patchI)
/*
forAll (pfCorr.boundaryField(), patchI)
{
if (pfCorr.boundaryField()[patchI].coupled())
{
pfCorr.boundaryField()[patchI].initAddField();
}
}*/
}
*/
/*forAll (pfCorr.boundaryField(), patchI)
/*
forAll (pfCorr.boundaryField(), patchI)
{
if (pfCorr.boundaryField()[patchI].coupled())
{
pfCorr.boundaryField()[patchI].addField(pfCorr.internalField());
}
}*/
}
*/
//Info << "pfCorr: " << pfCorr << endl;
pfCorr.correctBoundaryConditions();
//Info << "pfCorr: " << pfCorr << endl;
pfCorr.correctBoundaryConditions();
//pfCorr.write();

View file

@ -1,12 +1,15 @@
//- the method used to calculate the explicit component of sigma
word divDSigmaExpMethod(mesh.solutionDict().subDict("stressedFoam").lookup("divDSigmaExp"));
Info << "Calculation of divDSigmaExp method: " << divDSigmaExpMethod << endl;
if(divDSigmaExpMethod != "standard"
if
(
divDSigmaExpMethod != "standard"
&& divDSigmaExpMethod != "surface"
&& divDSigmaExpMethod != "decompose"
&& divDSigmaExpMethod != "laplacian")
{
&& divDSigmaExpMethod != "laplacian"
)
{
FatalError << "divDSigmaExp method " << divDSigmaExpMethod << " not found!" << nl
<< "valid methods are:\nstandard\nsurface\ndecompose\nlaplacian"
<< exit(FatalError);
}
}

View file

@ -1,5 +1,5 @@
if (runTime.outputTime())
{
{
volScalarField epsilonEq
(
IOobject
@ -53,4 +53,4 @@ if (runTime.outputTime())
<< endl;
runTime.write();
}
}

View file

@ -1,37 +1,37 @@
if(divDSigmaExpMethod == "standard")
{
{
divDSigmaExp = fvc::div
(
mu*gradDU.T() + lambda*(I*tr(gradDU)) - (mu + lambda)*gradDU,
"div(sigma)"
);
}
else if(divDSigmaExpMethod == "surface")
{
}
else if(divDSigmaExpMethod == "surface")
{
divDSigmaExp = fvc::div
(
muf*(mesh.Sf() & fvc::interpolate(gradDU.T()))
+ lambdaf*(mesh.Sf() & I*fvc::interpolate(tr(gradDU)))
- (muf + lambdaf)*(mesh.Sf() & fvc::interpolate(gradDU))
);
}
else if(divDSigmaExpMethod == "decompose")
{
surfaceTensorField shearGradU =
((I - n*n)&fvc::interpolate(gradDU));
}
else if(divDSigmaExpMethod == "decompose")
{
surfaceTensorField shearGradU = ((I - n*n)&fvc::interpolate(gradDU));
divDSigmaExp = fvc::div
(
mesh.magSf()
*(
*
(
- (muf + lambdaf)*(fvc::snGrad(U)&(I - n*n))
+ lambdaf*tr(shearGradU&(I - n*n))*n
+ muf*(shearGradU&n)
)
);
}
else if(divDSigmaExpMethod == "expLaplacian")
{
}
else if(divDSigmaExpMethod == "expLaplacian")
{
divDSigmaExp =
- fvc::laplacian(mu + lambda, U, "laplacian(DU,U)")
+ fvc::div
@ -40,8 +40,8 @@ if(divDSigmaExpMethod == "standard")
+ lambda*(I*tr(gradDU)),
"div(sigma)"
);
}
else
{
}
else
{
FatalError << "divDSigmaExp method " << divDSigmaExpMethod << " not found!" << endl;
}
}

View file

@ -1,9 +1,15 @@
//- how explicit component of sigma is to be calculated
word divDSigmaExpMethod(mesh.solutionDict().subDict("stressedFoam").lookup("divDSigmaExp"));
Info << "Selecting divDSigmaExp calculation method " << divDSigmaExpMethod << endl;
if(divDSigmaExpMethod != "standard" && divDSigmaExpMethod != "surface" && divDSigmaExpMethod != "decompose" && divDSigmaExpMethod != "laplacian")
{
if
(
divDSigmaExpMethod != "standard"
&& divDSigmaExpMethod != "surface"
&& divDSigmaExpMethod != "decompose"
&& divDSigmaExpMethod != "laplacian"
)
{
FatalError << "divDSigmaExp method " << divDSigmaExpMethod << " not found!" << nl
<< "valid methods are:\nstandard\nsurface\ndecompose\nlaplacian"
<< exit(FatalError);
}
}

View file

@ -1,5 +1,5 @@
if (runTime.outputTime())
{
{
volScalarField epsilonEq
(
IOobject
@ -53,4 +53,4 @@ if (runTime.outputTime())
<< endl;
runTime.write();
}
}

View file

@ -1,37 +1,37 @@
if(divSigmaExpMethod == "standard")
{
{
divSigmaExp = fvc::div
(
mu*gradU.T() + lambda*(I*tr(gradU)) - (mu + lambda)*gradU,
"div(sigma)"
);
}
else if(divSigmaExpMethod == "surface")
{
}
else if(divSigmaExpMethod == "surface")
{
divSigmaExp = fvc::div
(
muf*(mesh.Sf() & fvc::interpolate(gradU.T()))
+ lambdaf*(mesh.Sf() & I*fvc::interpolate(tr(gradU)))
- (muf + lambdaf)*(mesh.Sf() & fvc::interpolate(gradU))
);
}
else if(divSigmaExpMethod == "decompose")
{
surfaceTensorField shearGradU =
((I - n*n)&fvc::interpolate(gradU));
}
else if(divSigmaExpMethod == "decompose")
{
surfaceTensorField shearGradU = ((I - n*n)&fvc::interpolate(gradU));
divSigmaExp = fvc::div
(
mesh.magSf()
*(
*
(
- (muf + lambdaf)*(fvc::snGrad(U)&(I - n*n))
+ lambdaf*tr(shearGradU&(I - n*n))*n
+ muf*(shearGradU&n)
)
);
}
else if(divSigmaExpMethod == "expLaplacian")
{
}
else if(divSigmaExpMethod == "expLaplacian")
{
divSigmaExp =
- fvc::laplacian(mu + lambda, U, "laplacian(DU,U)")
+ fvc::div
@ -40,8 +40,8 @@ if(divSigmaExpMethod == "standard")
+ lambda*(I*tr(gradU)),
"div(sigma)"
);
}
else
{
}
else
{
FatalError << "divSigmaExp method " << divSigmaExpMethod << " not found!" << endl;
}
}

View file

@ -1,5 +1,5 @@
if (runTime.outputTime())
{
{
volScalarField epsilonEq
(
IOobject
@ -33,4 +33,4 @@ if (runTime.outputTime())
<< endl;
runTime.write();
}
}

View file

@ -1,37 +1,37 @@
if(sigmaExpMethod == "standard")
{
{
sigmaExp = fvc::div
(
mu*gradU.T() + lambda*(I*tr(gradU)) - (mu + lambda)*gradU,
"div(sigma)"
);
}
else if(sigmaExpMethod == "surface")
{
}
else if(sigmaExpMethod == "surface")
{
sigmaExp = fvc::div
(
muf*(mesh.Sf() & fvc::interpolate(gradU.T()))
+ lambdaf*(mesh.Sf() & I*fvc::interpolate(tr(gradU)))
- (muf + lambdaf)*(mesh.Sf() & fvc::interpolate(gradU))
);
}
else if(sigmaExpMethod == "decompose")
{
surfaceTensorField shearGradU =
((I - n*n)&fvc::interpolate(gradU));
}
else if(sigmaExpMethod == "decompose")
{
surfaceTensorField shearGradU = ((I - n*n)&fvc::interpolate(gradU));
sigmaExp = fvc::div
(
mesh.magSf()
*(
*
(
- (muf + lambdaf)*(fvc::snGrad(U)&(I - n*n))
+ lambdaf*tr(shearGradU&(I - n*n))*n
+ muf*(shearGradU&n)
)
);
}
else if(sigmaExpMethod == "expLaplacian")
{
}
else if(sigmaExpMethod == "expLaplacian")
{
sigmaExp =
- fvc::laplacian(mu + lambda, U, "laplacian(DU,U)")
+ fvc::div
@ -40,8 +40,8 @@ if(sigmaExpMethod == "standard")
+ lambda*(I*tr(gradU)),
"div(sigma)"
);
}
else
{
}
else
{
FatalError << "sigmaExp method " << sigmaExpMethod << " not found!" << endl;
}
}

View file

@ -13,7 +13,8 @@
}
//- update patch
if(
if
(
U.boundaryField()[patchID].type()
== fixedValueFvPatchVectorField::typeName
)
@ -27,7 +28,6 @@
<< " to " << disp
<< endl;
}
else
{
SeriousError << "Loading Patch " << patchName << " is type "

View file

@ -1,5 +1,5 @@
if (runTime.outputTime())
{
{
volScalarField epsilonEq
(
IOobject
@ -33,4 +33,4 @@ if (runTime.outputTime())
<< endl;
runTime.write();
}
}

View file

@ -4,16 +4,16 @@ label plateID = mesh.boundaryMesh().findPatchID("plate");
label cylinderID = mesh.boundaryMesh().findPatchID("cylinder");
if(plateID == -1 || cylinderID == -1)
{
{
FatalError << "\n Cannot find the plate patch or the cylinder"
<< " patch to calculate lift and drag!"
<< exit(FatalError);
}
}
scalar lift = 0;
scalar drag = 0;
const vectorField& Sfp = mesh.boundary()[plateID].Sf();
const vectorField& Sfp = mesh.boundary()[plateID].Sf();
forAll(p.boundaryField()[plateID], facei)
{
vector faceForce = p.boundaryField()[plateID][facei] * Sfp[facei];
@ -21,7 +21,7 @@ forAll(p.boundaryField()[plateID], facei)
drag += vector(1,0,0) & faceForce;
}
const vectorField& Sfc = mesh.boundary()[cylinderID].Sf();
const vectorField& Sfc = mesh.boundary()[cylinderID].Sf();
forAll(p.boundaryField()[cylinderID], facei)
{
vector faceForce = p.boundaryField()[cylinderID][facei] * Sfc[facei];
@ -29,9 +29,9 @@ forAll(p.boundaryField()[cylinderID], facei)
drag += vector(1,0,0) & faceForce;
}
scalar width = 0.050668;
scalar width = 0.050668;
Info << "Total lift on the cylinder and plate boundaries is " << lift << " N, per unit width is " << (lift/width) << " N\n"
Info << "Total lift on the cylinder and plate boundaries is " << lift << " N, per unit width is " << (lift/width) << " N\n"
<< "Total drag on the cylinder and plate boundaries is " << drag << " N, per unit width is " << (drag/width) << " N\n"
<< endl;
}

View file

@ -131,12 +131,12 @@ int main(int argc, char *argv[])
# include "rotateSolidFields.H"
//# include "moveSolidMesh.H"
//# include "moveSolidMesh.H"
# include "moveSolidMeshLeastSquares.H"
# include "calculateStress.H"
//# include "calculateLiftAndDrag.H"
//# include "calculateLiftAndDrag.H"
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"

View file

@ -2,7 +2,7 @@
//- move mesh
//--------------------------------------------------//
if(min(J.internalField()) > 0)
{
{
Info << "Moving mesh using least squares interpolation" << endl;
leastSquaresVolPointInterpolation pointInterpolation(stressMesh);
@ -31,8 +31,7 @@ if(min(J.internalField()) > 0)
pointInterpolation.interpolate(DU, pointDU);
const vectorField& pointDUI =
pointDU.internalField();
const vectorField& pointDUI = pointDU.internalField();
//- Move mesh
vectorField newPoints = stressMesh.allPoints();
@ -53,4 +52,4 @@ if(min(J.internalField()) > 0)
FatalErrorIn(args.executable())
<< "Negative Jacobian"
<< exit(FatalError);
}
}

View file

@ -68,23 +68,28 @@ Foam::contactPatchPair::contactPatchPair
// ),
// vectorField(cp_.mesh().boundaryMesh()[slavePatch_.index()].pointNormals().size(), vector::zero)
// ),
slavePointPenetration_(
slavePointPenetration_
(
cp_.mesh().boundaryMesh()[slavePatch_.index()].pointNormals().size(),
0.0
),
masterPointPenetration_(
masterPointPenetration_
(
cp_.mesh().boundaryMesh()[masterPatch_.index()].pointNormals().size(),
0.0
),
globalSlavePointPenetration_(
globalSlavePointPenetration_
(
cp_.mesh().pointZones()[cp_.mesh().faceZones().findZoneID(slaveFaceZoneName_)].size(),
0.0
),
globalMasterPointPenetration_(
globalMasterPointPenetration_
(
cp_.mesh().pointZones()[cp_.mesh().faceZones().findZoneID(masterFaceZoneName_)].size(),
0.0
),
oldTotalSlavePointForce_(
oldTotalSlavePointForce_
(
cp_.mesh().boundaryMesh()[slavePatch_.index()].pointNormals().size(),
vector::zero
),
@ -92,7 +97,8 @@ Foam::contactPatchPair::contactPatchPair
penetrationLimit_(readScalar(dict.lookup("penetrationLimit"))),
rigidMaster_(dict.lookup("rigidMaster")),
interpolationMethod_(dict.lookup("interpolationMethod")),
faceZoneMasterToSlaveInterpolator_(
faceZoneMasterToSlaveInterpolator_
(
cp_.mesh().faceZones()[cp_.mesh().faceZones().findZoneID(masterFaceZoneName_)](), // from
cp_.mesh().faceZones()[cp_.mesh().faceZones().findZoneID(slaveFaceZoneName_)](), // to zone
alg_,

View file

@ -34,7 +34,6 @@ Description
void Foam::contactPatchPair::correct()
{
//---------------------PRELIMINARIES---------------------------------//
const fvMesh& mesh = cp_.mesh();
const label& masterIndex = masterPatch_.index();
@ -42,28 +41,24 @@ void Foam::contactPatchPair::correct()
scalar maxMagSlaveTraction = 0.0;
contactIterNum_++;
//--------CALCULATE MASTER AND SLAVE PENETRATIONS----------------------//
scalarField& globalSlavePointPenetration = globalSlavePointPenetration_;
//scalarField& globalMasterPointPenetration = globalMasterPointPenetration_;
//- tell zoneToZone that mesh has moved, so the intersection will be recalculated
faceZoneMasterToSlaveInterpolator_.movePoints();
//- calculate intersection distances
//- this is the slowest part of the contact correction especially when the slavePatch
//- has many points. parallelisation of this step should be considered.
globalSlavePointPenetration
= faceZoneMasterToSlaveInterpolator_.pointDistanceToIntersection();
//globalMasterPointPenetration
//= faceZoneSlaveToMasterInterpolator.pointDistanceToIntersection();
globalSlavePointPenetration =
faceZoneMasterToSlaveInterpolator_.pointDistanceToIntersection();
//globalMasterPointPenetration =
// faceZoneSlaveToMasterInterpolator.pointDistanceToIntersection();
scalarField& slavePointPenetration = slavePointPenetration_;
//scalarField& masterPointPenetration = masterPointPenetration_;
forAll(slavePointPenetration, pointI)
{
//label pointGlobalLabel = slavePointLabels[pointI];
@ -95,8 +90,6 @@ void Foam::contactPatchPair::correct()
// }
//------CALCULATE SLAVE VERTEX FORCES BASED ON PENETRATION-------------//
//- approximation of penaltyFactor
//- this should be automatic, these numbers don't really matter, the scaleFactor
@ -111,9 +104,9 @@ void Foam::contactPatchPair::correct()
const vectorField& slavePointNormals = mesh.boundaryMesh()[slaveIndex].pointNormals();
vectorField& totalSlavePointForce = totalSlavePointForce_;
int numSlaveContactPoints = 0;
int numSlaveContactPointsReducing = 0;
int numSlavesUpdated = 0;
label numSlaveContactPoints = 0;
label numSlaveContactPointsReducing = 0;
label numSlavesUpdated = 0;
//- so the procs know the global min
//scalar minSlavePointPenetration = gMin(slavePointPenetration);
@ -134,7 +127,9 @@ void Foam::contactPatchPair::correct()
numSlavesUpdated++;
//- force is linearly dependent on penetration
totalSlavePointForce[pointI] +=
( slavePointNormals[pointI] * penaltyFactor * slavePointPenetration[pointI] );
(
slavePointNormals[pointI]*penaltyFactor*slavePointPenetration[pointI]
);
}
//- else if point is within contact tolerance then don't add any more force
else if(slavePointPenetration[pointI] < 0.0)
@ -151,7 +146,9 @@ void Foam::contactPatchPair::correct()
// point forces must be reduced slowly
totalSlavePointForce[pointI] +=
( slavePointNormals[pointI] * returnPenaltyFactor * slavePointPenetration[pointI] );
(
slavePointNormals[pointI]*returnPenaltyFactor*slavePointPenetration[pointI]
);
// if a tensile force develops
if((totalSlavePointForce[pointI] & slavePointNormals[pointI]) > 0.0)
@ -185,10 +182,10 @@ void Foam::contactPatchPair::correct()
//- for a deformable master
if(!rigidMaster_)
{
const label slaveFaceZoneID
= mesh.faceZones().findZoneID(slaveFaceZoneName_);
const label slavePatchStart
= mesh.boundaryMesh()[slaveIndex].start();
const label slaveFaceZoneID =
mesh.faceZones().findZoneID(slaveFaceZoneName_);
const label slavePatchStart =
mesh.boundaryMesh()[slaveIndex].start();
scalarField globalSlavePressure
(
@ -231,14 +228,13 @@ void Foam::contactPatchPair::correct()
);
}
//- exchange parallel data
reduce(globalMasterPressure, maxOp<scalarField>());
//Pout << "The max global master trac is " << max(globalMasterPressure) << endl;
const label masterPatchStart
= mesh.boundaryMesh()[masterIndex].start();
const label masterPatchStart =
mesh.boundaryMesh()[masterIndex].start();
scalarField masterPressure(mesh.boundaryMesh()[masterIndex].size(), 0.0);

View file

@ -147,8 +147,6 @@ void contactProblem::correct()
}
//**********************CONTACT AREA FUNCTION***********************************//
tmp<volScalarField> contactProblem::contactArea() const
{
@ -189,19 +187,19 @@ tmp<volScalarField> contactProblem::contactArea() const
label slaveIndex = contacts[contactI].slavePatch().index();
scalarField masterFrac = contacts[contactI].masterTouchFraction();
scalarField slaveFrac = contacts[contactI].slaveTouchFraction();
scalar contactAreaMaster =
gSum
scalar contactAreaMaster = gSum
(
masterFrac *
mag(
mag
(
mesh().Sf().boundaryField()[masterIndex]
)
);
scalar contactAreaSlave =
gSum
scalar contactAreaSlave = gSum
(
slaveFrac *
mag(
mag
(
mesh().Sf().boundaryField()[slaveIndex]
)
);
@ -275,8 +273,6 @@ void contactProblem::contactPointForce(pointVectorField& cPointForce)
}
tmp<volScalarField> contactProblem::contactPressure() const
{
tmp<volScalarField> tcPress

View file

@ -317,11 +317,11 @@ void solidTractionFreeFvPatchVectorField::write(Ostream& os) const
template<>
const char* Foam::NamedEnum<Foam::solidTractionFreeFvPatchVectorField::nonLinearType, 3>::names[] =
{
{
"off",
"updatedLagrangian",
"totalLagrangian"
};
};
const Foam::NamedEnum<Foam::solidTractionFreeFvPatchVectorField::nonLinearType, 3>
Foam::solidTractionFreeFvPatchVectorField::nonLinearNames_;

View file

@ -38,8 +38,8 @@ defineTypeNameAndDebug(leastSquaresVolPointInterpolation, 0);
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void leastSquaresVolPointInterpolation::calcA(List<scalarSquareMatrix>& A) const
{
void leastSquaresVolPointInterpolation::calcA(List<scalarSquareMatrix>& A) const
{
//Info << "leastSquaresVolPointInterpolation calcA" << endl;
const fvMesh& mesh = mesh_;
@ -180,11 +180,11 @@ defineTypeNameAndDebug(leastSquaresVolPointInterpolation, 0);
}
} //- end of else
} //- end of forAll boundary
}
}
void leastSquaresVolPointInterpolation::calcB(List<Field<vector> >& B, const GeometricField<vector, fvPatchField, volMesh>& vf) const
{
void leastSquaresVolPointInterpolation::calcB(List<Field<vector> >& B, const GeometricField<vector, fvPatchField, volMesh>& vf) const
{
//Info << "leastSquaresVolPointInterpolation calcB" << endl;
const fvMesh& mesh = mesh_;
@ -298,15 +298,15 @@ defineTypeNameAndDebug(leastSquaresVolPointInterpolation, 0);
}
} //- end of forAll boundary
} //- end of for all components
}
}
void leastSquaresVolPointInterpolation::interpolate
(
void leastSquaresVolPointInterpolation::interpolate
(
const GeometricField<vector, fvPatchField, volMesh>& vf,
GeometricField<vector, pointPatchField, pointMesh>& pf //Field<vector>& pf
) const
{
) const
{
//Info << "Interpolating cell to point using leastSquaresVolPointInterpolation" << endl;
const fvMesh& mesh = mesh_;
@ -361,19 +361,19 @@ defineTypeNameAndDebug(leastSquaresVolPointInterpolation, 0);
// * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * * //
leastSquaresVolPointInterpolation::leastSquaresVolPointInterpolation(const fvMesh& vm)
:
leastSquaresVolPointInterpolation::leastSquaresVolPointInterpolation(const fvMesh& vm)
:
mesh_(vm) //,
//A_(vm.points().size(), scalarSquareMatrix(4, 0.0)),
//B_(vm.points().size(), Field<vector>(4, vector::zero))
{
{
//calcA();
}
}
// * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * * //
leastSquaresVolPointInterpolation::~leastSquaresVolPointInterpolation()
{}
leastSquaresVolPointInterpolation::~leastSquaresVolPointInterpolation()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

View file

@ -312,7 +312,6 @@ void plasticityModel::correct()
{
betaPatch[faceI] = 0;
curDEpsEPred = DEpsilonPatch[faceI];
if
(
(DEpsilonEqPatch[faceI] >= 0)
@ -448,7 +447,6 @@ void plasticityModel::updateYieldStress()
bool plasticityModel::read()
{
if (regIOobject::read())
{
return true;

View file

@ -37,13 +37,15 @@ solvers
}
/* U
/*
U
{
solver PCG;
preconditioner DIC;
tolerance 1e-09;
relTol 0.99;
}*/
}
*/
}
stressedFoam

View file

@ -31,7 +31,6 @@ boundaryField
cohesive
{
type cohesiveZone;
cohesiveLaw Dugdale;
relaxationFactor 0.9;

View file

@ -273,6 +273,7 @@ int main(int argc, char *argv[])
mesh,
dimensionedScalar("zero", dimless, 0.0)
);
forAll(theta.internalField(), celli)
{
const scalar& x = mesh.C().internalField()[celli][vector::X];
@ -311,9 +312,12 @@ int main(int argc, char *argv[])
{
const scalar& t = theta.internalField()[celli];
rotMat.internalField()[celli] = tensor(::cos(t), ::sin(t), 0,
rotMat.internalField()[celli] = tensor
(
::cos(t), ::sin(t), 0,
-::sin(t), ::cos(t), 0,
0, 0, 1);
0, 0, 1
);
}
forAll(rotMat.boundaryField(), patchi)
@ -322,9 +326,12 @@ int main(int argc, char *argv[])
{
const scalar& t = theta.boundaryField()[patchi][facei];
rotMat.boundaryField()[patchi][facei] = tensor(::cos(t), ::sin(t), 0,
rotMat.boundaryField()[patchi][facei] = tensor
(
::cos(t), ::sin(t), 0,
-::sin(t), ::cos(t), 0,
0, 0, 1);
0, 0, 1
);
}
}
@ -350,18 +357,16 @@ int main(int argc, char *argv[])
const tensor& rot = rotMat.internalField()[celli];
symmTensor sigmaCart(r, 0, 0,
t, 0,
z);
symmTensor sigmaCart(r, 0, 0, t, 0, z);
sigma.internalField()[celli] =
symm(rot.T() & sigmaCart & rot);
//-for general 2-D plain strain problems, the axial stress is given by this:
//- (which is not equal to the solution by Timoshenko... hmmmnn)
// sigma.internalField()[celli][symmTensor::ZZ] =
// 0.3*(sigma.internalField()[celli][symmTensor::XX] + sigma.internalField()[celli][symmTensor::YY])
// - E*alpha*(T.internalField()[celli]);
// sigma.internalField()[celli][symmTensor::ZZ] =
// 0.3*(sigma.internalField()[celli][symmTensor::XX] + sigma.internalField()[celli][symmTensor::YY])
// - E*alpha*(T.internalField()[celli]);
}
forAll(sigma.boundaryField(), patchi)
@ -374,16 +379,12 @@ int main(int argc, char *argv[])
const tensor& rot = rotMat.boundaryField()[patchi][facei];
symmTensor sigmaCart(r, 0, 0,
t, 0,
z);
symmTensor sigmaCart(r, 0, 0, t, 0, z);
sigma.boundaryField()[patchi][facei] =
symm(rot.T() & sigmaCart & rot);
}
}
Info << "\nWriting analytical sigma tensor" << endl;
sigma.write();

View file

@ -110,14 +110,10 @@ int main(int argc, char *argv[])
label refFace = cells[celli][0];
//- insert first four abaqusCellPoints
abaqusCellPoints[celli][0]
= (faces[refFace][3] + 1);
abaqusCellPoints[celli][1]
= (faces[refFace][2] + 1);
abaqusCellPoints[celli][2]
= (faces[refFace][1] + 1);
abaqusCellPoints[celli][3]
= (faces[refFace][0] + 1);
abaqusCellPoints[celli][0] = (faces[refFace][3] + 1);
abaqusCellPoints[celli][1] = (faces[refFace][2] + 1);
abaqusCellPoints[celli][2] = (faces[refFace][1] + 1);
abaqusCellPoints[celli][3] = (faces[refFace][0] + 1);
//- now find the opposite face in the cell
//Info << "Finding oppFace" << endl << endl;
@ -181,29 +177,25 @@ int main(int argc, char *argv[])
label globalPpi = oppFacePPs[oppFacePointi];
if(globalPpi == faces[refFace][0])
{
abaqusCellPoints[celli][7]
= globalPointi + 1;
abaqusCellPoints[celli][7] = globalPointi + 1;
ppFound = true;
break;
}
else if(globalPpi == faces[refFace][1])
{
abaqusCellPoints[celli][6]
= globalPointi + 1;
abaqusCellPoints[celli][6] = globalPointi + 1;
ppFound = true;
break;
}
else if(globalPpi == faces[refFace][2])
{
abaqusCellPoints[celli][5]
= globalPointi + 1;
abaqusCellPoints[celli][5] = globalPointi + 1;
ppFound = true;
break;
}
else if(globalPpi == faces[refFace][3])
{
abaqusCellPoints[celli][4]
= globalPointi + 1;
abaqusCellPoints[celli][4] = globalPointi + 1;
ppFound = true;
break;
}

View file

@ -110,7 +110,6 @@ int main(int argc, char *argv[])
gradDU = fvc::grad(DU);
# include "calculateDEpsilonDSigma.H"
}
while
(

View file

@ -1,5 +1,5 @@
if (runTime.outputTime())
{
{
volScalarField epsilonEq
(
IOobject
@ -53,4 +53,4 @@ if (runTime.outputTime())
<< endl;
runTime.write();
}
}

View file

@ -126,16 +126,14 @@ Foam::tmp<Foam::scalarField> Foam::cellQuality::skewness() const
forAll (nei, faceI)
{
scalar dOwn =
mag
scalar dOwn = mag
(
(faceCtrs[faceI] - cellCtrs[own[faceI]])
&areas[faceI]
)
/mag(areas[faceI]);
scalar dNei =
mag
scalar dNei = mag
(
(cellCtrs[nei[faceI]] - faceCtrs[faceI])
&areas[faceI]
@ -176,8 +174,8 @@ Foam::tmp<Foam::scalarField> Foam::cellQuality::skewness() const
+ ((faceCentres[faceI] - cellCtrs[faceCells[faceI]])&n)*n;
scalar skewness =
mag(faceCentres[faceI] - faceIntersection)/
(
mag(faceCentres[faceI] - faceIntersection)
/(
mag(faceCentres[faceI] - cellCtrs[faceCells[faceI]])
+ VSMALL
);
@ -273,16 +271,14 @@ Foam::tmp<Foam::scalarField> Foam::cellQuality::faceSkewness() const
forAll (nei, faceI)
{
scalar dOwn =
mag
scalar dOwn = mag
(
(faceCtrs[faceI] - cellCtrs[own[faceI]])
&areas[faceI]
)
/mag(areas[faceI]);
scalar dNei =
mag
scalar dNei = mag
(
(cellCtrs[nei[faceI]] - faceCtrs[faceI])
&areas[faceI]
@ -322,8 +318,8 @@ Foam::tmp<Foam::scalarField> Foam::cellQuality::faceSkewness() const
+ ((faceCentres[faceI] - cellCtrs[faceCells[faceI]])&n)*n;
result[globalFaceI++] =
mag(faceCentres[faceI] - faceIntersection)/
(
mag(faceCentres[faceI] - faceIntersection)
/(
mag(faceCentres[faceI] - cellCtrs[faceCells[faceI]])
+ VSMALL
);

View file

@ -38,8 +38,8 @@ namespace Foam
{
// Temporary hack: useful for tracking balance of phi across interface
void
traceMixingPlaneFlux(
void traceMixingPlaneFlux
(
volVectorField& U,
surfaceScalarField& phi,
scalar& masterPatchScaleFactor,
@ -93,12 +93,9 @@ traceMixingPlaneFlux(
<< mag(phiFromU - shadowPhiFromU)/(phiFromU + SMALL)*100
<< " %"
<< endl;
}
}
}
}
}

View file

@ -1 +0,0 @@
../linux64Gcc/mplibSYSTEMOPENMPI

View file

@ -0,0 +1 @@
PFLAGS = -DOMPI_SKIP_MPICXX