Dual stream heat exchanger for porous media

This commit is contained in:
Hrvoje Jasak 2019-07-18 14:59:33 +01:00
parent baabe4700b
commit 6c3a4880a4
4 changed files with 185 additions and 116 deletions

View file

@ -77,16 +77,18 @@ Foam::porousZone::porousZone
C1_(0),
D_("D", dimensionSet(0, -2, 0, 0, 0), tensor::zero),
F_("F", dimensionSet(0, -1, 0, 0, 0), tensor::zero),
rhoPri_(0),
Cpri_(0),
Maux_(0),
Qaux_(0),
Caux_(0),
Taux_(0),
caux_(0),
Qepsilon_(0),
Tauxrelax_(0),
TauxRelax_(1),
nCellsAuxInlet_(0),
firstCell_(0),
auxUnitVector_(vector::zero),
nVerticalCells_(0)
{
Info<< "Creating porous zone: " << name_ << endl;
@ -184,7 +186,7 @@ Foam::porousZone::porousZone
// provide some feedback for the user
// writeDict(Info, false);
// it is an error not to define anything
// It is an error not to define anything
if
(
C0_ <= VSMALL
@ -206,32 +208,41 @@ Foam::porousZone::porousZone
if (const dictionary* dictPtr = dict_.subDictPtr("heatTransfer"))
{
Info<< "Reading porous heatTransfer: Maux and Taux" << nl;
dictPtr->lookup("rhoPri") >> rhoPri_;
dictPtr->lookup("Cpri") >> Cpri_;
dictPtr->lookup("Maux") >> Maux_;
dictPtr->lookup("Qaux") >> Qaux_;
dictPtr->lookup("Caux") >> Caux_;
dictPtr->lookup("Taux") >> Taux_;
dictPtr->lookup("caux") >> caux_;
dictPtr->lookup("Qepsilon") >> Qepsilon_;
dictPtr->lookup("firstCell") >> firstCell_;
dictPtr->lookup("auxUnitVector") >> auxUnitVector_;
dictPtr->lookup("nVerticalCells") >> nVerticalCells_;
dictPtr->lookup("nCellsAuxInlet") >> nCellsAuxInlet_;
dictPtr->lookup("TauxRelax") >> Tauxrelax_;
Info<< "Maux = " << Maux_ <<
", Taux = " << Taux_ <<
", caux = " << caux_ <<
", nCellsAuxInlet = " << nCellsAuxInlet_ <<
", Qepsilon = " << Qepsilon_ << nl;
dictPtr->lookup("TauxRelax") >> TauxRelax_;
Info<< "Maux = " << Maux_
<< ", Taux = " << Taux_
<< ", Caux = " << Caux_
<< ", nCellsAuxInlet = " << nCellsAuxInlet_
<< ", Qepsilon = " << Qepsilon_
<< endl;
if (mag(auxUnitVector_) < SMALL)
{
FatalIOErrorInFunction(dict)
<< "auxUnitVector for heat transfer zone "
<< name_ << " has zero length"
<< exit(FatalIOError);
}
else
{
FatalIOErrorIn
(
"Foam::porousZone::porousZone"
"(const fvMesh&, const word&, const dictionary&)",
dict_
) << "\"heatTransfer\" dictionary not specified"
<< exit(FatalIOError);
auxUnitVector_ /= mag(auxUnitVector_);
}
}
}
@ -330,6 +341,7 @@ void Foam::porousZone::addResistance
}
bool compressible = false;
if (UEqn.dimensions() == dimensionSet(1, 1, -2, 0, 0))
{
compressible = true;
@ -473,35 +485,60 @@ void Foam::porousZone::macroCellOrder
Info<< "Creating cellsOrdered list for porous heat transfer zone "
<< name_ << nl << endl;
const labelList& cells = mesh_.cellZones()[cellZoneID_];
const vectorField& cellsCellCenter = mesh_.cellCentres();
// Get current zone
const cellZone& curZone = mesh_.cellZones()[cellZoneID_];
// Get cell centres
const vectorField& cellCentres = mesh_.C().internalField();
// Get cell-cell addressing
const labelListList& cc = mesh_.cellCells();
scalarField& Tauxi = Taux.internalField();
label nCellsAuxInlet(nCellsAuxInlet_);
label firstCell(firstCell_);
label nVerticalCells(nVerticalCells_);
vector auxUnitVector(auxUnitVector_);
// Get inlet cells
labelList cellsAuxInlet(nCellsAuxInlet_, -1);
labelList cellsAuxInlet(nCellsAuxInlet, -1);
cellsAuxInlet[0] = firstCell;
if (nCellsAuxInlet_ > 0)
{
cellsAuxInlet[0] = firstCell_;
}
else
{
WarningInFunction
<< "Number of aux inlet cells is set to zero: " << nCellsAuxInlet_
<< "Reconsider the definition of macro cell order"
<< endl;
}
// Creating horizontal list of cells, cellsAuxInlet[nCellsAuxInlet_]
label newCounter = 1;
// Note
// Terrible search algorithms
// Will work only in serial. Rewrite required
// HJ, 17/Jul/2019
// - Creating horizontal list of cells, cellsAuxInlet[nCellsAuxInlet]
label newcounter = 1;
forAll (cellsAuxInlet, i)
{
const labelList& cellNb = mesh_.cellCells(cellsAuxInlet[i]);
const labelList& cellNb = cc[cellsAuxInlet[i]];
forAll (cellNb, ii)
{
bool isInsideNb = false;
forAll (cellsAuxInlet, iii)
{
if (cellNb[ii] == cellsAuxInlet[iii]) isInsideNb = true;
if (cellNb[ii] == cellsAuxInlet[iii])
{
isInsideNb = true;
break;
}
}
if (!isInsideNb)
{
if (mesh_.cellZones()[cellZoneID_].whichCell(cellNb[ii]) != -1)
if (curZone.whichCell(cellNb[ii]) != -1)
{
if
(
@ -509,21 +546,21 @@ void Foam::porousZone::macroCellOrder
(
(
(
cellsCellCenter[cellsAuxInlet[i]]
- cellsCellCenter[cellNb[ii]]
cellCentres[cellsAuxInlet[i]]
- cellCentres[cellNb[ii]]
)/
mag
(
cellsCellCenter[cellsAuxInlet[i]]
- cellsCellCenter[cellNb[ii]]
cellCentres[cellsAuxInlet[i]]
- cellCentres[cellNb[ii]]
)
)
& auxUnitVector
& auxUnitVector_
) < 0.5
)
{
cellsAuxInlet[newcounter] = cellNb[ii];
++newcounter;
cellsAuxInlet[newCounter] = cellNb[ii];
++newCounter;
}
}
}
@ -532,42 +569,45 @@ void Foam::porousZone::macroCellOrder
scalarField& Macroi = Macro.internalField();
labelList cellsOrdered(cells.size(), -1);
labelList cellsOrdered(curZone.size(), -1);
// Writing horizontal cells into list cellsOrdered[cells.size()]
forAll (cellsAuxInlet, i)
{
cellsOrdered[i*nVerticalCells] = cellsAuxInlet[i];
cellsOrdered[i*nVerticalCells_] = cellsAuxInlet[i];
}
// Creating cellsOrdered list of ordered horizontal cells
label counter = 1;
forAll (cellsOrdered, i)
{
Macroi[cellsOrdered[i]] = i;
Tauxi[cellsOrdered[i]] = Taux_;
if ((i > 1) && (i % nVerticalCells == 0))
if ((i > 1) && (i % nVerticalCells_ == 0))
{
++counter;
}
const labelList& cellNb = mesh_.cellCells(cellsOrdered[i]);
const labelList& cellNb =cc[cellsOrdered[i]];
forAll (cellNb, iii)
{
bool isInsideNb = false;
forAll (cellsOrdered, iiii)
{
if (cellNb[iii] == cellsOrdered[iiii])
{
isInsideNb = true;
break;
}
}
if (!isInsideNb)
{
if (mesh_.cellZones()[cellZoneID_].whichCell(cellNb[iii]) != -1)
if (curZone.whichCell(cellNb[iii]) != -1)
{
if
(
@ -575,16 +615,16 @@ void Foam::porousZone::macroCellOrder
(
(
(
cellsCellCenter[cellsOrdered[i]]
- cellsCellCenter[cellNb[iii]]
cellCentres[cellsOrdered[i]]
- cellCentres[cellNb[iii]]
)/
mag
(
cellsCellCenter[cellsOrdered[i]]
- cellsCellCenter[cellNb[iii]]
cellCentres[cellsOrdered[i]]
- cellCentres[cellNb[iii]]
)
)
& auxUnitVector
& auxUnitVector_
) > 0.85
)
{
@ -602,9 +642,11 @@ void Foam::porousZone::macroCellOrder
forAll (cellsOrdered, i)
{
const labelList& cellFaces = mesh_.cells()[cellsOrdered[i]];
forAll (cellFaces,ii)
forAll (cellFaces, ii)
{
label faceI = cellFaces[ii];
if (mesh_.isInternalFace(faceI))
{
if (mesh_.faceOwner()[faceI] == cellsOrdered[i])
@ -626,15 +668,10 @@ void Foam::porousZone::macroCellOrder
else
{
const label patchI = mesh_.boundaryMesh().whichPatch(faceI);
const label faceIL =
mesh_.boundaryMesh()[patchI].whichFace(faceI);
if (patchI < 0)
{
Info << "patchI < 0 " << endl;
return;
}
if (phi.boundaryField()[patchI][faceIL] > 0.0)
{
posFluxi[cellsOrdered[i]] +=
@ -645,6 +682,7 @@ void Foam::porousZone::macroCellOrder
}
}
void Foam::porousZone::writeDict(Ostream& os, bool subDict) const
{
if (subDict)

View file

@ -39,13 +39,15 @@ Description
S = - \rho C_0 |U|^{(C_1 - 1)/2} U
@f]
In the porous zone a heat source using the single stream heat exchanger
In the porous zone a heat source using the dual stream heat exchanger
approach:
heatTransfer
@f[
Qtot = const //[J/s]
Tref = const //[K]
Maux = Mass flow of aux fluid // [kg/s]
Qaux = Heat to be eliminated // [W]
Caux = Specific heat capacity of aux fluid // [J / kg K]
Taux = initial guess for aux fluid inlet temperature // [K]
@f]
Darcy-Forchheimer (@e d and @e f parameters)
@ -138,20 +140,29 @@ class porousZone
//- Forchheimer coefficient
dimensionedTensor F_;
//- Density of primary fluid
scalar rhoPri_;
//- Specific heat capacity of primary fluid
scalar Cpri_;
//- Mass flow of aux fluid
scalar Maux_;
//- Inlet temperature of aux fluid
scalar Taux_;
//- Heat to be eliminated
scalar Qaux_;
//- Specific heat capacity of coolant
scalar caux_;
scalar Caux_;
//- Inlet temperature of aux fluid
mutable scalar Taux_;
//- Epsilon for Single Effectiveness HX
scalar Qepsilon_;
//- Relaxation factor for Taux
scalar Tauxrelax_;
scalar TauxRelax_;
// Geometrical description of the porous heat exchanger

View file

@ -33,12 +33,12 @@ void Foam::porousZone::modifyDdt(fvMatrix<Type>& m) const
{
if (porosity_ < 1)
{
const labelList& cells = mesh_.cellZones()[cellZoneID_];
const labelList& zoneCells = mesh_.cellZones()[cellZoneID_];
forAll(cells, i)
forAll (zoneCells, i)
{
m.diag()[cells[i]] *= porosity_;
m.source()[cells[i]] *= porosity_;
m.diag()[zoneCells[i]] *= porosity_;
m.source()[zoneCells[i]] *= porosity_;
}
}
}
@ -150,68 +150,86 @@ void Foam::porousZone::addHeatSource
const scalarField dT = Tauxi - T;
const label nMacro(nCellsAuxInlet_*nVerticalCells_);
scalarList Tmacro(nMacro, 0.0);
scalarList dTaux(nMacro, 0.0);
scalar QSum(0.0);
scalarField Tmacro(nMacro, scalar(0));
scalarField dTaux(nMacro, scalar(0));
scalar QSum = 0;
const scalar Taux_relax(Tauxrelax_);
const scalar c_aux(caux_);
const scalar c_pri(1009.0);
const scalar qm_aux(Maux_);
const scalar qm_auxi = qm_aux/nCellsAuxInlet_;
const scalar T_aux(Taux_);
const scalar rho_pri(1.1021);
const scalar Qeps(Qepsilon_);
// Mass flow rate for individual channels
const scalar qmAuxi = Maux_/nCellsAuxInlet_;
const labelList& cells = mesh_.cellZones()[cellZoneID_];
// Get zone cells
const labelList& zoneCells = mesh_.cellZones()[cellZoneID_];
forAll(cells, i)
forAll (zoneCells, i)
{
scalar Qcell = Qeps*rho_pri*c_pri*posFlux[cells[i]]*dT[cells[i]];
scalar Qcell =
Qepsilon_*rhoPri_*Cpri_*posFlux[zoneCells[i]]*dT[zoneCells[i]];
// heat in each macro(cell)
Qauxi[cells[i]] = Qcell;
// Heat in each macro (cell)
Qauxi[zoneCells[i]] = Qcell;
// make an int out of a macro
const int macro = Macro[cells[i]];
const int macro = Macro[zoneCells[i]];
// deltaTaux in each macro(cell)
dTaux[macro] = Qcell/(c_aux*qm_auxi);
dTaux[macro] = Qcell/(Caux_*qmAuxi);
// adding Heat to equation
QSource[cells[i]] += Qcell/(rho_pri*c_pri);
QSource[zoneCells[i]] += Qcell/(rhoPri_*Cpri_);
// summing for total heat of HX
QSum += Qcell;
}
reduce(dTaux, sumOp<scalarList>());
Tmacro[0] = T_aux;
reduce(dTaux, sumOp<scalarField>());
Tmacro[0] = Taux_;
forAll (Tmacro, i)
{
if (i > 0)
{
Tmacro[i] = Tmacro[i-1] - dTaux[i-1];
}
if ((i > 0) && (i % nVerticalCells_ == 0))
if (i % nVerticalCells_ == 0)
{
Tmacro[i] = T_aux;
Tmacro[i] = Taux_;
}
else
{
Tmacro[i] = Tmacro[i - 1] - dTaux[i - 1];
}
}
}
reduce(QSum, sumOp<scalar>());
Info << "Heat exchanger: " << name_ << endl;
Info << "Q = " << QSum << endl;
Info << "deltaT = " << QSum/(qm_aux*c_aux) << endl;
forAll(cells, i)
// Adjust Taux_ to match the specified transferred heat
scalar deltaTAux = (Qaux_ - QSum)/(Maux_*Caux_);
Info<< "Heat exchanger: " << name_
<< ": Q = " << QSum
<< " Taux = " << Taux_
<< " delta Taux = " << deltaTAux
<< endl;
// Relax the heat source
forAll (zoneCells, i)
{
const int macro = Macro[cells[i]];
Tauxi[cells[i]] = Tauxi_old[cells[i]]
// upwind scheme for Aux fluid (Tmacro = inlet temp)
+ Taux_relax*(Tmacro[macro] - Tauxi_old[cells[i]]);
const int macro = Macro[zoneCells[i]];
Tauxi[zoneCells[i]] = Tauxi_old[zoneCells[i]]
+ TauxRelax_*(Tmacro[macro] - Tauxi_old[zoneCells[i]]);
}
// Note: need better relaxation to speed up convergence close
// to the matching value, when deltaTAux -> 0
// HJ, 17/Jul/2019
// Limit deltaTAux to 10% of Taux_
deltaTAux = sign(deltaTAux)*Foam::min(0.1*Taux_, mag(deltaTAux));
// Update Taux for next iteration
Taux_ += TauxRelax_*deltaTAux;
}

View file

@ -47,8 +47,10 @@ Description
}
heatTransfer
{
Qtot 50; //[J/s]
Tref 273.15; //[K]
Maux = Mass flow of aux fluid // [kg/s]
Qaux = Heat to be eliminated // [W]
Caux = Specific heat capacity of aux fluid // [J / kg K]
Taux = initial guess for aux fluid inlet temperature // [K]
}
}
)
@ -168,7 +170,7 @@ public:
const volScalarField& posFlux
) const;
//- Order cells for Dual Stream model
//- Order cells for the Dual Stream model
void macroCellOrder
(
volScalarField& Taux,