Improved immersed boundary quality check

This commit is contained in:
Hrvoje Jasak 2019-03-13 12:17:43 +00:00
parent f1545bac95
commit 5fce429505

View file

@ -130,24 +130,118 @@ void Foam::calc(const argList& args, const Time& runTime, const fvMesh& mesh)
volVectorField divSf volVectorField divSf
( (
"divSf", "divSf",
fvc::div(mesh.Sf()) fvc::surfaceIntegrate(mesh.Sf())
); );
divSf.write(); divSf.write();
// Check divergence of face area vectors // Check divergence of face area vectors. Note: scale by the volume
scalarField magDivSf = mag(divSf)().internalField(); // to avoid bias towards small cells. HJ, 13/Mar/2019
scalarField magDivSf = mag(divSf)().internalField()*mesh.V().field();
Info<< "Face areas divergence (min, max, average): " Info<< "Face areas divergence (min, max, average): "
<< "(" << min(magDivSf) << " " << max(magDivSf) << "(" << min(magDivSf) << " " << max(magDivSf)
<< " " << average(magDivSf) << ")" << " " << average(magDivSf) << ")"
<< endl; << endl;
if (max(magDivSf) > 1e-9) if (max(magDivSf) > primitiveMesh::closedThreshold_)
{ {
WarningIn("writeIbMasks") WarningIn("writeIbMasks")
<< "Possible problem with immersed boundary face area vectors: " << "Possible problem with immersed boundary face area vectors: "
<< max(magDivSf) << max(magDivSf)
<< endl; << endl;
scalar maxOpenCell = 0;
label maxOpenCellIndex = -1;
forAll (magDivSf, cellI)
{
if (magDivSf[cellI] > maxOpenCell)
{
maxOpenCell = magDivSf[cellI];
maxOpenCellIndex = cellI;
}
if (magDivSf[cellI] > 1e-9)
{
Info<< "Open cell " << cellI << ": " << magDivSf[cellI]
<< " gamma: " << gamma[cellI] << endl;
}
}
const surfaceVectorField& Sf = mesh.Sf();
const labelList& openCellFaces = mesh.cells()[maxOpenCellIndex];
scalarField openCellFaceGamma(openCellFaces.size(), scalar(-1));
vectorField openFaceAreas
(
IndirectList<vector>(mesh.faceAreas(), openCellFaces)()
);
vectorField adjustedFaceAreas(openCellFaces.size());
forAll (openCellFaces, cfI)
{
const label& faceI = openCellFaces[cfI];
if (mesh.isInternalFace(faceI))
{
openCellFaceGamma[cfI] = sGamma.internalField()[faceI];
adjustedFaceAreas[cfI] = Sf.internalField()[faceI];
}
else
{
const label patchI = mesh.boundaryMesh().whichPatch(faceI);
const label patchFaceI =
mesh.boundaryMesh()[patchI].whichFace(faceI);
openCellFaceGamma[cfI] =
sGamma.boundaryField()[patchI][patchFaceI];
adjustedFaceAreas[cfI] = Sf.boundaryField()[patchI][patchFaceI];
}
}
// Find faces on IB patches
vectorField ibVectors(mesh.boundary().size());
label nIbVectors = 0;
forAll (mesh.boundary(), patchI)
{
if (isA<immersedBoundaryFvPatch>(mesh.boundary()[patchI]))
{
const labelList& ibpFC = mesh.boundary()[patchI].faceCells();
forAll (ibpFC, ibpFCI)
{
if (ibpFC[ibpFCI] == maxOpenCellIndex)
{
ibVectors[nIbVectors] =
mesh.Sf().boundaryField()[patchI][ibpFCI];
nIbVectors++;
}
}
}
}
ibVectors.setSize(nIbVectors);
Pout<< "Max open cell index: " << maxOpenCellIndex
<< " magDivSf = " << maxOpenCell << nl
<< "faces: " << openCellFaces << nl
<< " original areas: " << openFaceAreas << nl
<< "sGamma: " << openCellFaceGamma << nl
<< "adjusted areas: " << adjustedFaceAreas << nl
<< "cut face areas: " << ibVectors << nl
<< "Sum normal areas: " << sum(openFaceAreas) << nl
<< "Sum iB areas: " << sum(ibVectors) << nl
<< endl;
} }
Info<< endl; Info<< endl;