First version of geometricSixDOF class

Compiles but does not produce correct results. Still need to find bugs.
This commit is contained in:
Vuko Vukcevic 2017-02-28 13:59:52 +01:00 committed by Hrvoje Jasak
parent 60821402da
commit 546cfc0f5f
6 changed files with 1107 additions and 44 deletions

View file

@ -17,6 +17,7 @@ $(sixDOF)/sixDOFODE/sixDOFODEIO.C
$(sixDOF)/sixDOFODE/sixDOFODE.C
$(sixDOF)/sixDOFODE/newSixDOFODE.C
$(sixDOF)/quaternionSixDOF/quaternionSixDOF.C
$(sixDOF)/geometricSixDOF/geometricSixDOF.C
$(sixDOF)/sixDOFBodies/sixDOFBodies.C

View file

@ -0,0 +1,703 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 4.0
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
Class
geometricSixDOF
Description
6-DOF solver using a geometric method for integration of rotations.
Author
Viktor Pandza, FSB Zagreb. All rights reserved.
Vuko Vukcevic, FSB Zagreb. All rights reserved.
SourceFiles
geometricSixDOF.C
\*---------------------------------------------------------------------------*/
#include "geometricSixDOF.H"
#include "OutputControlDictionary.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(geometricSixDOF, 0);
addToRunTimeSelectionTable(sixDOFODE, geometricSixDOF, dictionary);
}
const Foam::debug::tolerancesSwitch Foam::geometricSixDOF::rotIncTensorTol_
(
"geometrixSixDOFRotIncTensorTol",
1e-10
);
const Foam::debug::tolerancesSwitch Foam::geometricSixDOF::rotIncRateTol_
(
"geometrixSixDOFRotIncRateTol",
1e-6
);
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
Foam::dimensionedVector Foam::geometricSixDOF::A
(
const dimensionedVector& xR,
const dimensionedVector& uR,
const tensor& R
) const
{
// Fix the total force in global coordinate system
dimensionedVector fAbs =
// Force in global coordinate system
force()
// Force in local coordinate system
+ (dimensionedTensor("R_T", dimless, R.T()) & forceRelative())
// Spring force in global coordinate system
- (linSpringCoeffs() & xR)
// Damping force in global coordinate system
- (linDampingCoeffs() & uR);
// Constrain translation simply by setting the total force to zero
constrainTranslation(fAbs.value());
return fAbs/mass();
}
Foam::dimensionedVector Foam::geometricSixDOF::OmegaDot
(
const tensor& R,
const dimensionedVector& omega
) const
{
// External moment (torque) in local coordinate system
dimensionedVector mRel =
// Moment in global coordinate system
(dimensionedTensor("R", dimless, R) & moment())
// Moment in local coordinate system
+ momentRelative();
// Note: constraints not implemented at the moment. They shall be
// implemented in terms of Lagrange multipliers.
return
inv(momentOfInertia())
& (
E(omega)
+ mRel
);
}
Foam::dimensionedVector Foam::geometricSixDOF::E
(
const dimensionedVector& omega
) const
{
return (*(momentOfInertia() & omega) & omega);
}
void Foam::geometricSixDOF::constrainTranslation(vector& vec) const
{
// Constrain the vector with respect to referent or global coordinate system
if (referentMotionConstraints_)
{
vector consVec(referentRotation_.R() & vec);
if (fixedSurge_)
{
consVec.x() = 0;
}
if (fixedSway_)
{
consVec.y() = 0;
}
if (fixedHeave_)
{
consVec.z() = 0;
}
vec = referentRotation_.invR() & consVec;
}
else
{
if (fixedSurge_)
{
vec.x() = 0;
}
if (fixedSway_)
{
vec.y() = 0;
}
if (fixedHeave_)
{
vec.z() = 0;
}
}
}
Foam::tensor Foam::geometricSixDOF::expMap(const vector& rotInc) const
{
tensor R;
// Calculate the magnitude of the rotation increment vector
const scalar magRotInc = mag(rotInc);
if (magRotInc < rotIncTensorTol_)
{
// No rotational increment
R = I;
}
else
{
// Calculate rotational increment tensor using the exponential map
// Skew-symmetric tensor corresponding to the rotation increment
const tensor skewRotInc(*rotInc);
R = I
+ skewRotInc*sin(magRotInc)/magRotInc
+ (skewRotInc & skewRotInc)*(1.0 - cos(magRotInc))/sqr(magRotInc);
}
return R;
}
Foam::vector Foam::geometricSixDOF::dexpMap
(
const vector& rotInc,
const vector& omega
) const
{
vector rotIncDot;
// Calculate the magnitude of the rotation increment vector
const scalar magRotInc = mag(rotInc);
if (magRotInc < rotIncRateTol_)
{
// Stabilised calculation of rotation increment to avoid small
// denominators
rotIncDot = omega;
}
else
{
// Calculate rate of the rotational increment vector using the
// differential of the exponential map
// Skew-symmetric tensor corresponding to the rotation increment
const tensor skewRotInc(*rotInc);
rotIncDot =
(
I
+ 0.5*skewRotInc
- (skewRotInc & skewRotInc)*
(magRotInc/tan(magRotInc/2.0) - 2.0)/(2.0*sqr(magRotInc))
)
& omega;
}
return rotIncDot;
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::geometricSixDOF::geometricSixDOF(const IOobject& io)
:
sixDOFODE(io),
Xrel_(dict().lookup("Xrel")),
U_(dict().lookup("U")),
Uaverage_(U_),
rotation_(tensor(dict().lookup("rotationTensor"))),
omega_(dict().lookup("omega")),
omegaAverage_(omega_),
omegaAverageAbsolute_(omega_),
nEqns_(),
coeffs_(),
fixedSurge_(dict().lookup("fixedSurge")),
fixedSway_(dict().lookup("fixedSway")),
fixedHeave_(dict().lookup("fixedHeave")),
fixedRoll_(dict().lookup("fixedRoll")),
fixedPitch_(dict().lookup("fixedPitch")),
fixedYaw_(dict().lookup("fixedYaw")),
referentMotionConstraints_
(
dict().lookupOrDefault<Switch>
(
"referentMotionConstraints",
false
)
),
referentRotation_(vector(1, 0, 0), 0)
{
// Missing constraints. Count how many rotational constraints we have in
// order to count the number of equations.
nEqns_ = 12;
// Set size for ODE coefficients depending on number of equations
coeffs_.setSize(nEqns_);
// Set ODE coefficients from position and rotation
// Linear displacement relative to spring equilibrium
const vector& Xval = Xrel_.value();
coeffs_[0] = Xval.x();
coeffs_[1] = Xval.y();
coeffs_[2] = Xval.z();
// Linear velocity
const vector& Uval = U_.value();
coeffs_[3] = Uval.x();
coeffs_[4] = Uval.y();
coeffs_[5] = Uval.z();
// Rotational velocity in non - inertial coordinate system
const vector& omegaVal = omega_.value();
coeffs_[6] = omegaVal.x();
coeffs_[7] = omegaVal.y();
coeffs_[8] = omegaVal.z();
// Increment of the rotation vector (zero for initial condition)
coeffs_[9] = 0;
coeffs_[10] = 0;
coeffs_[11] = 0;
}
Foam::geometricSixDOF::geometricSixDOF
(
const word& name,
const geometricSixDOF& gsd
)
:
sixDOFODE
(
IOobject
(
name,
gsd.dict().instance(),
gsd.dict().local(),
gsd.dict().db(),
IOobject::NO_READ,
IOobject::NO_WRITE
)
),
Xrel_(gsd.Xrel_.name(), gsd.Xrel_),
U_(gsd.U_.name(), gsd.U_),
Uaverage_(gsd.Uaverage_.name(), gsd.Uaverage_),
rotation_(gsd.rotation_),
omega_(gsd.omega_.name(), gsd.omega_),
omegaAverage_(gsd.omegaAverage_.name(), gsd.omegaAverage_),
omegaAverageAbsolute_
(
gsd.omegaAverageAbsolute_.name(),
gsd.omegaAverageAbsolute_
),
nEqns_(gsd.nEqns_),
coeffs_(gsd.coeffs_),
fixedSurge_(gsd.fixedSurge_),
fixedSway_(gsd.fixedSway_),
fixedHeave_(gsd.fixedHeave_),
fixedRoll_(gsd.fixedRoll_),
fixedPitch_(gsd.fixedPitch_),
fixedYaw_(gsd.fixedYaw_),
referentMotionConstraints_(gsd.referentMotionConstraints_),
referentRotation_(gsd.referentRotation_)
{}
Foam::autoPtr<Foam::sixDOFODE> Foam::geometricSixDOF::clone
(
const word& name
) const
{
// Create and return an autoPtr to the new geometricSixDOF object with a
// new name
return autoPtr<sixDOFODE>
(
new geometricSixDOF
(
name,
*this
)
);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::geometricSixDOF::~geometricSixDOF()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
const Foam::dimensionedVector& Foam::geometricSixDOF::Xrel() const
{
return Xrel_;
}
const Foam::dimensionedVector& Foam::geometricSixDOF::omega() const
{
return omega_;
}
Foam::dimensionedVector Foam::geometricSixDOF::X() const
{
return Xequilibrium() + Xrel_;
}
const Foam::dimensionedVector& Foam::geometricSixDOF::U() const
{
return U_;
}
const Foam::dimensionedVector& Foam::geometricSixDOF::Uaverage() const
{
return Uaverage_;
}
const Foam::finiteRotation& Foam::geometricSixDOF::rotation() const
{
return rotation_;
}
Foam::vector Foam::geometricSixDOF::rotVector() const
{
return rotation_.rotVector();
}
Foam::dimensionedScalar Foam::geometricSixDOF::rotAngle() const
{
return dimensionedScalar("rotAngle", dimless, rotation_.rotAngle());
}
void Foam::geometricSixDOF::setXrel(const vector& x)
{
Xrel_.value() = x;
// Set X in coefficients
coeffs_[0] = x.x();
coeffs_[1] = x.y();
coeffs_[2] = x.z();
}
void Foam::geometricSixDOF::setU(const vector& U)
{
U_.value() = U;
Uaverage_ = U_;
// Set U in coefficients
coeffs_[3] = U.x();
coeffs_[4] = U.y();
coeffs_[5] = U.z();
}
void Foam::geometricSixDOF::setRotation(const HamiltonRodriguezRot& rot)
{
// Set increment rotation vector to zero
coeffs_[9] = 0;
coeffs_[10] = 0;
coeffs_[11] = 0;
}
void Foam::geometricSixDOF::setOmega(const vector& omega)
{
omega_.value() = omega;
omegaAverage_ = omega_;
omegaAverageAbsolute_ = omega_;
// Set omega in coefficients
coeffs_[6] = omega.x();
coeffs_[7] = omega.y();
coeffs_[8] = omega.z();
}
void Foam::geometricSixDOF::setReferentRotation
(
const HamiltonRodriguezRot& rot
)
{
referentRotation_ = rot;
referentMotionConstraints_ = true;
}
void Foam::geometricSixDOF::setState(const sixDOFODE& sd)
{
// First set the state in base class subobject
sixDOFODE::setState(sd);
// Cast sixDOFODE& to geometricSixDOF&
const geometricSixDOF& gsd = refCast<const geometricSixDOF>(sd);
// Set state variables for this class
Xrel_ = gsd.Xrel_;
U_ = gsd.U_;
Uaverage_ = gsd.Uaverage_;
rotation_ = gsd.rotation_;
omega_ = gsd.omega_;
omegaAverage_ = gsd.omegaAverage_;
omegaAverageAbsolute_ = gsd.omegaAverageAbsolute_;
// Copy ODE coefficients: this carries actual ODE state
// HJ, 23/Mar/2015
coeffs_ = gsd.coeffs_;
fixedSurge_ = gsd.fixedSurge_;
fixedSway_ = gsd.fixedSway_;
fixedHeave_ = gsd.fixedHeave_;
fixedRoll_ = gsd.fixedRoll_;
fixedPitch_ = gsd.fixedPitch_;
fixedYaw_ = gsd.fixedYaw_;
referentMotionConstraints_ = gsd.referentMotionConstraints_;
referentRotation_ = gsd.referentRotation_;
}
Foam::vector Foam::geometricSixDOF::rotVectorAverage() const
{
return rotation_.rotVectorAverage();
}
const Foam::dimensionedVector& Foam::geometricSixDOF::omegaAverage() const
{
return omegaAverage_;
}
const Foam::dimensionedVector&
Foam::geometricSixDOF::omegaAverageAbsolute() const
{
return omegaAverageAbsolute_;
}
Foam::tensor Foam::geometricSixDOF::toRelative() const
{
// Note: using rotation tensor directly since we are integrating rotational
// increment vector
return rotation_.rotTensor();
}
Foam::tensor Foam::geometricSixDOF::toAbsolute() const
{
// Note: using rotation tensor directly since we are integrating rotational
// increment vector
return rotation_.rotTensor().T();
}
const Foam::tensor& Foam::geometricSixDOF::rotIncrementTensor() const
{
return rotation_.rotIncrementTensor();
}
void Foam::geometricSixDOF::derivatives
(
const scalar x,
const scalarField& y,
scalarField& dydx
) const
{
// Translation
// Set the derivatives for displacement
dydx[0] = y[3];
dydx[1] = y[4];
dydx[2] = y[5];
dimensionedVector curX("curX", dimLength, vector(y[0], y[1], y[2]));
dimensionedVector curU("curU", dimVelocity, vector(y[3], y[4], y[5]));
// Get rotational increment vector (u)
const vector rotIncrementVector(y[9], y[10], y[11]);
// Calculate rotation increment tensor obtained with exponential map using
// the increment vector
const tensor rotIncrement = expMap(rotIncrementVector);
// Update rotation tensor
rotation_.updateRotation(rotIncrement);
// Calculate translational acceleration using current rotation
const vector accel = A(curX, curU, rotation_.rotTensor()).value();
// Set the derivatives for velocity
dydx[3] = accel.x();
dydx[4] = accel.y();
dydx[5] = accel.z();
// Rotation
dimensionedVector curOmega
(
"curOmega",
dimless/dimTime,
vector(y[6], y[7], y[8])
);
// Calculate rotational acceleration using current rotation
const vector omegaDot = OmegaDot(rotation_.rotTensor(), curOmega).value();
dydx[6] = omegaDot.x();
dydx[7] = omegaDot.y();
dydx[8] = omegaDot.z();
// Calculate derivative of rotIncrementVector using current rotation
// information
const vector rotIncrementVectorDot =
dexpMap(rotIncrementVector, curOmega.value());
// Set the derivatives for rotation
dydx[9] = rotIncrementVectorDot.x();
dydx[10] = rotIncrementVectorDot.y();
dydx[11] = rotIncrementVectorDot.z();
}
void Foam::geometricSixDOF::update(const scalar delta)
{
// Translation
// Update displacement
vector Xold = Xrel_.value();
vector& Xval = Xrel_.value();
Xval.x() = coeffs_[0];
Xval.y() = coeffs_[1];
Xval.z() = coeffs_[2];
// Update velocity
Uaverage_.value() = (Xval - Xold)/delta;
vector& Uval = U_.value();
Uval.x() = coeffs_[3];
Uval.y() = coeffs_[4];
Uval.z() = coeffs_[5];
// Constrain velocity and re-set coefficients
constrainTranslation(Uval);
coeffs_[3] = Uval.x();
coeffs_[4] = Uval.y();
coeffs_[5] = Uval.z();
// Rotation
// Update omega
vector& omegaVal = omega_.value();
omegaVal.x() = coeffs_[6];
omegaVal.y() = coeffs_[7];
omegaVal.z() = coeffs_[8];
// Update rotation with final increment vector
rotation_.updateRotation
(
expMap(vector(coeffs_[9], coeffs_[10], coeffs_[11]))
);
// Reset increment vector in coefficients for the next step
coeffs_[9] = 0;
coeffs_[10] = 0;
coeffs_[11] = 0;
omegaAverage_.value() = rotation_.omegaAverage(delta);
// Calculate omegaAverageAbsolute
omegaAverageAbsolute_.value() = rotation_.omegaAverageAbsolute(delta);
}
bool Foam::geometricSixDOF::writeData(Ostream& os) const
{
// First write the part related to base class subobject
sixDOFODE::writeData(os);
// Write type name
os.writeKeyword("type") << tab << type() << token::END_STATEMENT << endl;
// Write data
os.writeKeyword("Xrel") << tab << this->Xrel()
<< token::END_STATEMENT << nl;
os.writeKeyword("U") << tab << this->U() << token::END_STATEMENT << nl;
os.writeKeyword("rotationTensor") << tab << this->toRelative()
<< token::END_STATEMENT << nl;
os.writeKeyword("omega") << tab << this->omega()
<< token::END_STATEMENT << nl << nl;
os.writeKeyword("fixedSurge") << tab << this->fixedSurge_ <<
token::END_STATEMENT << endl;
os.writeKeyword("fixedSway") << tab << this->fixedSway_ <<
token::END_STATEMENT << endl;
os.writeKeyword("fixedHeave") << tab << this->fixedHeave_ <<
token::END_STATEMENT << endl;
os.writeKeyword("fixedRoll") << tab << this->fixedRoll_ <<
token::END_STATEMENT << endl;
os.writeKeyword("fixedPitch") << tab << this->fixedPitch_ <<
token::END_STATEMENT << endl;
os.writeKeyword("fixedYaw") << tab << this->fixedYaw_ <<
token::END_STATEMENT << endl;
return os.good();
}
// ************************************************************************* //

View file

@ -0,0 +1,378 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 4.0
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
Class
geometricSixDOF
Description
6-DOF solver using a geometric method for integration of rotations.
Reference (bibtex):
@article {mullerTerze2016,
Author = {M\"{u}ller, A. and Terze, Z.},
title = {Geometric methods and formulations in computational
multibody systems},
Journal = {Acta Mechanica},
Year = {2016},
Volume = {227},
Number = {12},
Pages = {3327--3350}
}
Author
Viktor Pandza, FSB Zagreb. All rights reserved.
Vuko Vukcevic, FSB Zagreb. All rights reserved.
SourceFiles
geometricSixDOF.C
\*---------------------------------------------------------------------------*/
#ifndef geometricSixDOF_H
#define geometricSixDOF_H
#include "sixDOFODE.H"
#include "finiteRotation.H"
#include "tolerancesSwitch.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
/*---------------------------------------------------------------------------*\
Class geometricSixDOF Declaration
\*---------------------------------------------------------------------------*/
class geometricSixDOF
:
public sixDOFODE
{
// Private data
// Initial body state variables
//- Displacement relative to spring equilibrium
dimensionedVector Xrel_;
//- Velocity of mass centroid
dimensionedVector U_;
//- Average velocity of mass centroid at previous time-step
dimensionedVector Uaverage_;
//- Finite rotation. Note: changed during solution process
mutable finiteRotation rotation_;
//- Rotational velocity about mass centroid
dimensionedVector omega_;
// Average variables that need to be stored
//- Average rotational velocity in relative coordinate system
dimensionedVector omegaAverage_;
//- Average rotational velocity in absolute coordinate system
dimensionedVector omegaAverageAbsolute_;
// ODE controls
//- Number of equations (depending on rotational constraints)
scalar nEqns_;
//- ODE coefficients
scalarField coeffs_;
//- Motion constraints (given as fixed motion components)
//- Fixed surge (x-translation)
Switch fixedSurge_;
//- Fixed sway (y-translation)
Switch fixedSway_;
//- Fixed heave (z-translation)
Switch fixedHeave_;
//- Fixed roll (rotation around x)
Switch fixedRoll_;
//- Fixed pitch (rotation around y)
Switch fixedPitch_;
//- Fixed yaw (rotation around z)
Switch fixedYaw_;
//- Constraints in referent coordinate system
Switch referentMotionConstraints_;
//- Rotation of referent coordinate system. Currently defined using
// quaternions for comatibility. Need to reformulate.
// VV, 28/Feb/2017.
HamiltonRodriguezRot referentRotation_;
// Private Member Functions
//- Disallow default bitwise copy construct
geometricSixDOF(const geometricSixDOF&);
//- Disallow default bitwise assignment
void operator=(const geometricSixDOF&);
// Variables in relative coordinate system (solved for)
//- Return acceleration in relative coordinate system
// given current values of relative displacement and velocity
dimensionedVector A
(
const dimensionedVector& xR,
const dimensionedVector& uR,
const tensor& R
) const;
//- Return rotational acceleration in relative coordinate system
// given current values for relative rotational velocity
dimensionedVector OmegaDot
(
const tensor& R,
const dimensionedVector& omega
) const;
//- Return the Euler part of moment equation
dimensionedVector E
(
const dimensionedVector& omega
) const;
//- Constrain translation vector in referent or global coordinate
// system
void constrainTranslation(vector& vec) const;
//- Exponential map used to calculate increment of the rotation
// tensor
tensor expMap(const vector& rotInc) const;
//- Differential of the expontential map used to calculate the time
// derivative of rotation increment vector
vector dexpMap(const vector& rotInc, const vector& omega) const;
public:
// Run-time type information
TypeName("geometricSixDOF");
// Static data members
//- Rotational increment tensor tolerance. Used in expMap member
// function in case the rotation is negligibly small
static const debug::tolerancesSwitch rotIncTensorTol_;
//- Rotational increment rate of change tolerance. Used in dexpMap
// member function in case the rotation rate is negligibly small
static const debug::tolerancesSwitch rotIncRateTol_;
// Constructors
//- Construct from dictionary
geometricSixDOF(const IOobject& io);
//- Construct geometricSixDOF object, changing name
geometricSixDOF
(
const word& name,
const geometricSixDOF& gsd
);
//- Return a clone, changing the name
virtual autoPtr<sixDOFODE> clone(const word& name) const;
// Destructor
virtual ~geometricSixDOF();
// Member Functions
// Virtual interface for 6DOF motion state
// Variables in relative coordinate system
//- Return displacement in translated coordinate system
// relative to spring equilibrium
virtual const dimensionedVector& Xrel() const;
//- Return rotational velocity in relative coordinate system
virtual const dimensionedVector& omega() const;
// Displacement and rotation in the absolute coordinate system
//- Return position of origin in absolute coordinate system
virtual dimensionedVector X() const;
//- Return velocity of origin
virtual const dimensionedVector& U() const;
//- Return average velocity of origin for the previous time-step
virtual const dimensionedVector& Uaverage() const;
//- Return finite rotation
virtual const finiteRotation& rotation() const;
//- Return rotational vector of body
virtual vector rotVector() const;
//- Return rotation angle of body
virtual dimensionedScalar rotAngle() const;
// Non-access control for setting state variables
//- Set position of origin
virtual void setXrel(const vector& x);
//- Set velocity of origin
virtual void setU(const vector& u);
//- Set rotational angle in relative coordinate system
virtual void setRotation(const HamiltonRodriguezRot& rot);
//- Set rotational velocity in relative coordinate system
virtual void setOmega(const vector& omega);
//- Set referent coordinate system to apply constraints
virtual void setReferentRotation
(
const HamiltonRodriguezRot& rot
);
//- Set ODE parameters from another ODE
virtual void setState(const sixDOFODE&);
// Average motion per time-step
//- Return average rotational vector of body
virtual vector rotVectorAverage() const;
//- Return average rotational velocity in relative coordinate
// system
virtual const dimensionedVector& omegaAverage() const;
//- Return average rotational velocity in absolute coordinate
// system
virtual const dimensionedVector& omegaAverageAbsolute() const;
// Rotations
//- Return rotation tensor to relative coordinate system
virtual tensor toRelative() const;
//- Return rotation tensor to absolute coordinate system
virtual tensor toAbsolute() const;
//- Return transformation tensor between new and previous
// rotation
virtual const tensor& rotIncrementTensor() const;
// ODE parameters
//- Return number of equations
virtual label nEqns() const
{
return nEqns_;
}
//- Return access to coefficients
virtual scalarField& coeffs()
{
return coeffs_;
}
//- Return reference to coefficients
virtual const scalarField& coeffs() const
{
return coeffs_;
}
//- Evaluate derivatives
virtual void derivatives
(
const scalar x,
const scalarField& y,
scalarField& dydx
) const;
//- Evaluate Jacobian
virtual void jacobian
(
const scalar x,
const scalarField& y,
scalarField& dfdx,
scalarSquareMatrix& dfdy
) const
{
notImplemented
(
"geometricSixDOF::jacobian\n"
"(\n"
" const scalar x,\n"
" const scalarField& y,\n"
" scalarField& dfdx,\n"
" scalarSquareMatrix& dfdy,\n"
") const"
);
}
//- Update ODE after the solution, advancing by delta
virtual void update(const scalar delta);
// Write controls
//- WriteData member function required by regIOobject
virtual bool writeData(Ostream&) const;
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View file

@ -189,38 +189,6 @@ void Foam::quaternionSixDOF::constrainTranslation(vector& vec) const
}
// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
void Foam::quaternionSixDOF::setCoeffs()
{
// Set ODE coefficients from position and rotation
// Linear displacement relative to spring equilibrium
const vector& Xval = Xrel_.value();
coeffs_[0] = Xval.x();
coeffs_[1] = Xval.y();
coeffs_[2] = Xval.z();
// Linear velocity
const vector& Uval = U_.value();
coeffs_[3] = Uval.x();
coeffs_[4] = Uval.y();
coeffs_[5] = Uval.z();
// Rotational velocity in non - inertial coordinate system
const vector& omegaVal = omega_.value();
coeffs_[6] = omegaVal.x();
coeffs_[7] = omegaVal.y();
coeffs_[8] = omegaVal.z();
// Quaternions
coeffs_[9] = rotation_.eInitial().e0();
coeffs_[10] = rotation_.eInitial().e1();
coeffs_[11] = rotation_.eInitial().e2();
coeffs_[12] = rotation_.eInitial().e3();
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::quaternionSixDOF::quaternionSixDOF(const IOobject& io)
@ -257,7 +225,31 @@ Foam::quaternionSixDOF::quaternionSixDOF(const IOobject& io)
),
referentRotation_(vector(1, 0, 0), 0)
{
setCoeffs();
// Set ODE coefficients from position and rotation
// Linear displacement relative to spring equilibrium
const vector& Xval = Xrel_.value();
coeffs_[0] = Xval.x();
coeffs_[1] = Xval.y();
coeffs_[2] = Xval.z();
// Linear velocity
const vector& Uval = U_.value();
coeffs_[3] = Uval.x();
coeffs_[4] = Uval.y();
coeffs_[5] = Uval.z();
// Rotational velocity in non - inertial coordinate system
const vector& omegaVal = omega_.value();
coeffs_[6] = omegaVal.x();
coeffs_[7] = omegaVal.y();
coeffs_[8] = omegaVal.z();
// Quaternions
coeffs_[9] = rotation_.eInitial().e0();
coeffs_[10] = rotation_.eInitial().e1();
coeffs_[11] = rotation_.eInitial().e2();
coeffs_[12] = rotation_.eInitial().e3();
}

View file

@ -160,14 +160,6 @@ class quaternionSixDOF
void constrainTranslation(vector& vec) const;
protected:
// Protected Member Functions
//- Set ODE coefficients from position and rotation
virtual void setCoeffs();
public:
// Run-time type information

View file

@ -146,9 +146,6 @@ protected:
// Protected Member Functions
//- Set ODE coefficients from position and rotation
virtual void setCoeffs() = 0;
//- Update Aitkens relaxation parameters
void aitkensRelaxation(const scalar min, const scalar max);