Temporary: consistent solver examples

This commit is contained in:
Hrvoje Jasak 2016-03-16 17:49:11 +00:00
parent 5766de6e54
commit 2d5052d714
20 changed files with 813 additions and 0 deletions

View file

@ -0,0 +1,3 @@
consistentIcoFoam.C
EXE = $(FOAM_APPBIN)/consistentIcoFoam

View file

@ -0,0 +1,6 @@
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-llduSolvers

View file

@ -0,0 +1,125 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 3.2
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
Application
consistentIcoFoam
Description
Transient solver for incompressible, laminar flow of Newtonian fluids.
Consistent formulation without time-step and relaxation dependence by Jasak
Author
Hrvoje Jasak, Wikki Ltd. All rights reserved
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
# include "initContinuityErrs.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.loop())
{
Info<< "Time = " << runTime.timeName() << nl << endl;
# include "readPISOControls.H"
# include "CourantNo.H"
// Convection-diffusion matrix
fvVectorMatrix HUEqn
(
fvm::div(phi, U)
- fvm::laplacian(nu, U)
);
// ddt matrix
fvVectorMatrix ddtUEqn(fvm::ddt(U));
solve(ddtUEqn + HUEqn == -fvc::grad(p));
// Prepare clean Ap without time derivative contribution
// HJ, 26/Oct/2015
volScalarField aU = HUEqn.A();
// --- PISO loop
for (int corr = 0; corr < nCorr; corr++)
{
U = HUEqn.H()/aU;
phi = (fvc::interpolate(U) & mesh.Sf());
adjustPhi(phi, U, p);
for (int nonOrth = 0; nonOrth <= nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pEqn
(
fvm::laplacian(1/aU, p) == fvc::div(phi)
);
pEqn.setReference(pRefCell, pRefValue);
pEqn.solve();
if (nonOrth == nNonOrthCorr)
{
phi -= pEqn.flux();
}
}
# include "continuityErrs.H"
// Note: cannot call H(U) here because the velocity is not complete
// HJ, 22/Jan/2016
U = 1.0/(aU + ddtUEqn.A())*
(
U*aU - fvc::grad(p) + ddtUEqn.H()
);
U.correctBoundaryConditions();
}
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View file

@ -0,0 +1,55 @@
Info<< "Reading transportProperties\n" << endl;
IOdictionary transportProperties
(
IOobject
(
"transportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
dimensionedScalar nu
(
transportProperties.lookup("nu")
);
Info<< "Reading field p\n" << endl;
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
# include "createPhi.H"
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell(p, mesh.solutionDict().subDict("PISO"), pRefCell, pRefValue);

View file

@ -0,0 +1,3 @@
consistentPimpleDyMFoam.C
EXE = $(FOAM_APPBIN)/consistentPimpleDyMFoam

View file

@ -0,0 +1,21 @@
EXE_INC = \
-I$(LIB_SRC)/dynamicMesh/dynamicFvMesh/lnInclude \
-I$(LIB_SRC)/dynamicMesh/dynamicMesh/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/turbulenceModels/incompressible/turbulenceModel \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
-I$(LIB_SRC)/finiteVolume/lnInclude
EXE_LIBS = \
-ldynamicFvMesh \
-ltopoChangerFvMesh \
-ldynamicMesh \
-lmeshTools \
-lincompressibleTransportModels \
-lincompressibleTurbulenceModel \
-lincompressibleRASModels \
-lincompressibleLESModels \
-lfiniteVolume \
-llduSolvers \
-L$(MESQUITE_LIB_DIR) -lmesquite

View file

@ -0,0 +1,33 @@
// Convection-diffusion matrix
fvVectorMatrix HUEqn
(
fvm::div(phi, U)
+ turbulence->divDevReff(U)
);
// ddt matrix
fvVectorMatrix ddtUEqn(fvm::ddt(U));
// Get under-relaxation factor and under-relax the diagonal
scalar UUrf = mesh.solutionDict().relaxationFactor(U.name());
if (oCorr == nOuterCorr - 1)
{
if (mesh.solutionDict().relax("UFinal"))
{
UUrf = mesh.solutionDict().relaxationFactor("UFinal");
}
else
{
UUrf = 1;
}
}
// Solve momentum predictor
solve
(
ddtUEqn
+ relax(HUEqn, UUrf)
==
-fvc::grad(p)
);

View file

@ -0,0 +1,128 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 3.2
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
Application
pimpleDyMFoam.C
Description
Transient solver for incompressible, flow of Newtonian fluids
with dynamic mesh using the PIMPLE (merged PISO-SIMPLE) algorithm.
Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "turbulenceModel.H"
#include "dynamicFvMesh.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createDynamicFvMesh.H"
# include "readPIMPLEControls.H"
# include "initContinuityErrs.H"
# include "createFields.H"
# include "readTimeControls.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
# include "readControls.H"
# include "CourantNo.H"
# include "setDeltaT.H"
// Make the fluxes absolute
fvc::makeAbsolute(phi, U);
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
bool meshChanged = mesh.update();
# include "volContinuity.H"
if (checkMeshCourantNo)
{
# include "meshCourantNo.H"
}
// Mesh motion update
if (correctPhi && meshChanged)
{
// Fluxes will be corrected to absolute velocity
// HJ, 6/Feb/2009
# include "correctPhi.H"
}
if (meshChanged)
{
# include "CourantNo.H"
}
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, U);
// --- PIMPLE loop
label oCorr = 0;
do
{
if (nOuterCorr != 1)
{
p.storePrevIter();
}
# include "UEqn.H"
// --- PISO loop
for (int corr = 0; corr < nCorr; corr++)
{
# include "pEqn.H"
}
turbulence->correct();
} while (++oCorr < nOuterCorr);
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View file

@ -0,0 +1,58 @@
{
# include "continuityErrs.H"
wordList pcorrTypes
(
p.boundaryField().size(),
zeroGradientFvPatchScalarField::typeName
);
for (label i = 0; i < p.boundaryField().size(); i++)
{
if (p.boundaryField()[i].fixesValue())
{
pcorrTypes[i] = fixedValueFvPatchScalarField::typeName;
}
}
volScalarField pcorr
(
IOobject
(
"pcorr",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("pcorr", p.dimensions(), 0),
pcorrTypes
);
// Initialise flux with interpolated velocity
phi = fvc::interpolate(U) & mesh.Sf();
adjustPhi(phi, U, pcorr);
for(int nonOrth = 0; nonOrth <= nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pcorrEqn
(
fvm::laplacian(1/aU, pcorr) == fvc::div(phi)
);
pcorrEqn.setReference(pRefCell, pRefValue);
pcorrEqn.solve();
if (nonOrth == nNonOrthCorr)
{
phi -= pcorrEqn.flux();
}
// Fluxes are corrected to absolute velocity and further corrected
// later. HJ, 6/Feb/2009
}
# include "continuityErrs.H"
}

View file

@ -0,0 +1,58 @@
Info<< "Reading field p\n" << endl;
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
# include "createPhi.H"
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell(p, mesh.solutionDict().subDict("PIMPLE"), pRefCell, pRefValue);
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<incompressible::turbulenceModel> turbulence
(
incompressible::turbulenceModel::New(U, phi, laminarTransport)
);
Info<< "Reading field aU if present\n" << endl;
volScalarField aU
(
IOobject
(
"aU",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
1/runTime.deltaT(),
zeroGradientFvPatchScalarField::typeName
);

View file

@ -0,0 +1,71 @@
{
p.boundaryField().updateCoeffs();
// Prepare clean Ap without time derivative contribution and
// without contribution from under-relaxation
// HJ, 26/Oct/2015
aU = HUEqn.A();
// Store velocity under-relaxation point before using U for
// the flux precursor
U.storePrevIter();
U = HUEqn.H()/aU;
phi = (fvc::interpolate(U) & mesh.Sf());
// Global flux balance
adjustPhi(phi, U, p);
for (int nonOrth = 0; nonOrth <= nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pEqn
(
fvm::laplacian(1/aU, p) == fvc::div(phi)
);
pEqn.setReference(pRefCell, pRefValue);
if
(
// oCorr == nOuterCorr - 1
corr == nCorr - 1
&& nonOrth == nNonOrthCorr
)
{
pEqn.solve
(
mesh.solutionDict().solver(p.name() + "Final")
);
}
else
{
pEqn.solve(mesh.solutionDict().solver(p.name()));
}
if (nonOrth == nNonOrthCorr)
{
phi -= pEqn.flux();
}
}
// Explicitly relax pressure for momentum corrector
if (oCorr != nOuterCorr - 1)
{
p.relax();
}
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, U);
# include "movingMeshContinuityErrs.H"
U = UUrf*
(
1.0/(aU + ddtUEqn.A())*
(
U*aU - fvc::grad(p) + ddtUEqn.H()
)
)
+ (1 - UUrf)*U.prevIter();
U.correctBoundaryConditions();
}

View file

@ -0,0 +1,14 @@
# include "readTimeControls.H"
# include "readPIMPLEControls.H"
bool correctPhi = false;
if (pimple.found("correctPhi"))
{
correctPhi = Switch(pimple.lookup("correctPhi"));
}
bool checkMeshCourantNo = false;
if (pimple.found("checkMeshCourantNo"))
{
checkMeshCourantNo = Switch(pimple.lookup("checkMeshCourantNo"));
}

View file

@ -0,0 +1,3 @@
consistentSimpleFoam.C
EXE = $(FOAM_APPBIN)/consistentSimpleFoam

View file

@ -0,0 +1,12 @@
EXE_INC = -g \
-I$(LIB_SRC)/turbulenceModels \
-I$(LIB_SRC)/turbulenceModels/incompressible/RAS/RASModel \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
-I$(LIB_SRC)/finiteVolume/lnInclude
EXE_LIBS = \
-lincompressibleRASModels \
-lincompressibleTransportModels \
-lfiniteVolume \
-llduSolvers

View file

@ -0,0 +1,20 @@
// Solve the momentum equation
tmp<fvVectorMatrix> HUEqn
(
fvm::div(phi, U)
+ turbulence->divDevReff(U)
);
// Get under-relaxation factor and under-relax the diagonal
const scalar UUrf = mesh.solutionDict().relaxationFactor(U.name());
// Momentum solution
eqnResidual = solve
(
relax(HUEqn(), UUrf)
==
-fvc::grad(p)
).initialResidual();
maxResidual = max(eqnResidual, maxResidual);

View file

@ -0,0 +1,86 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 3.2
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
Application
consistentSimpleFoam
Description
Steady-state solver for incompressible, turbulent flow
Consistent formulation without time-step and relaxation dependence by Jasak
Author
Hrvoje Jasak, Wikki Ltd. All rights reserved
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "RASModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
# include "initContinuityErrs.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.loop())
{
Info<< "Time = " << runTime.timeName() << nl << endl;
# include "readSIMPLEControls.H"
# include "initConvergenceCheck.H"
p.storePrevIter();
// Pressure-velocity SIMPLE corrector
{
# include "UEqn.H"
# include "pEqn.H"
}
turbulence->correct();
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
# include "convergenceCheck.H"
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View file

@ -0,0 +1,9 @@
// check convergence
if (maxResidual < convergenceCriterion)
{
Info<< "reached convergence criterion: " << convergenceCriterion << endl;
runTime.writeAndEnd();
Info<< "latestTime = " << runTime.timeName() << endl;
}

View file

@ -0,0 +1,42 @@
Info << "Reading field p\n" << endl;
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info << "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
# include "createPhi.H"
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell(p, mesh.solutionDict().subDict("SIMPLE"), pRefCell, pRefValue);
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<incompressible::RASModel> turbulence
(
incompressible::RASModel::New(U, phi, laminarTransport)
);

View file

@ -0,0 +1,7 @@
// initialize values for convergence checks
scalar eqnResidual = 1, maxResidual = 0;
scalar convergenceCriterion = 0;
simple.readIfPresent("convergence", convergenceCriterion);

View file

@ -0,0 +1,59 @@
p.boundaryField().updateCoeffs();
// Prepare clean 1/Ap without contribution from under-relaxation
// HJ, 26/Oct/2015
volScalarField rUA
(
"(1|A(U))",
1/HUEqn().A()
);
// Store velocity under-relaxation point before using U for
// the flux precursor
U.storePrevIter();
U = rUA*HUEqn().H();
HUEqn.clear();
phi = fvc::interpolate(U) & mesh.Sf();
// Global flux balance
adjustPhi(phi, U, p);
// Non-orthogonal pressure corrector loop
for (int nonOrth = 0; nonOrth <= nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pEqn
(
fvm::laplacian(rUA, p) == fvc::div(phi)
);
pEqn.setReference(pRefCell, pRefValue);
// Retain the residual from the first iteration
if (nonOrth == 0)
{
eqnResidual = pEqn.solve().initialResidual();
maxResidual = max(eqnResidual, maxResidual);
}
else
{
pEqn.solve();
}
if (nonOrth == nNonOrthCorr)
{
phi -= pEqn.flux();
}
}
# include "continuityErrs.H"
// Explicitly relax pressure for momentum corrector
p.relax();
// Momentum corrector
// Note: since under-relaxation does not change aU, H/a in U can be
// re-used. HJ, 22/Jan/2016
U = UUrf*(U - rUA*fvc::grad(p)) + (1 - UUrf)*U.prevIter();
U.correctBoundaryConditions();