{
bool closedVolume = p.needReference();
rho = thermo.rho();
// Thermodynamic density needs to be updated by psi*d(p) after the
// pressure solution - done in 2 parts. Part 1:
thermo.rho() -= psi*p;
volScalarField rUA = 1.0/UEqn.A();
surfaceScalarField rhorUAf("(rho*(1|A(U)))", fvc::interpolate(rho*rUA));
U = rUA*UEqn.H();
surfaceScalarField phiU
(
fvc::interpolate(rho)
*(
(fvc::interpolate(U) & mesh.Sf())
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
)
);
phi = phiU + rhorUAf*fvc::interpolate(rho)*(g & mesh.Sf());
while (piso.correctNonOrthogonal())
fvScalarMatrix pEqn
fvc::ddt(rho) + psi*correction(fvm::ddt(p))
+ fvc::div(phi)
- fvm::laplacian(rhorUAf, p)
pEqn.solve(mesh.solutionDict().solver(p.select(piso.finalInnerIter())));
if (piso.finalNonOrthogonalIter())
phi += pEqn.flux();
}
// Second part of thermodynamic density update
thermo.rho() += psi*p;
U += rUA*fvc::reconstruct((phi - phiU)/rhorUAf);
U.correctBoundaryConditions();
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
#include "rhoEqn.H"
#include "compressibleContinuityErrs.H"
// For closed-volume cases adjust the pressure and density levels
// to obey overall mass continuity
if (closedVolume)
p +=
(initialMass - fvc::domainIntegrate(psi*p))
/fvc::domainIntegrate(psi);
thermo.rho() = psi*p;
rho += (initialMass - fvc::domainIntegrate(rho))/totalVolume;