This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/incompressible/channelFoam/channelFoam.C

156 lines
4.3 KiB
C
Raw Normal View History

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Application
2010-08-26 14:22:03 +00:00
channelFoam
Description
Incompressible LES solver for flow in a channel.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
2010-08-26 14:22:03 +00:00
#include "singlePhaseTransportModel.H"
#include "LESModel.H"
#include "IFstream.H"
#include "OFstream.H"
#include "Random.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "readTransportProperties.H"
#include "createFields.H"
#include "initContinuityErrs.H"
#include "createGradP.H"
Info<< "\nStarting time loop\n" << endl;
2010-08-26 14:22:03 +00:00
while (runTime.loop())
{
Info<< "Time = " << runTime.timeName() << nl << endl;
#include "readPISOControls.H"
#include "CourantNo.H"
sgsModel->correct();
fvVectorMatrix UEqn
(
fvm::ddt(U)
+ fvm::div(phi, U)
+ sgsModel->divDevBeff(U)
==
flowDirection*gradP
);
if (momentumPredictor)
{
solve(UEqn == -fvc::grad(p));
}
// --- PISO loop
volScalarField rUA = 1.0/UEqn.A();
for (int corr=0; corr<nCorr; corr++)
{
U = rUA*UEqn.H();
phi = (fvc::interpolate(U) & mesh.Sf())
+ fvc::ddtPhiCorr(rUA, U, phi);
adjustPhi(phi, U, p);
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pEqn
(
fvm::laplacian(rUA, p) == fvc::div(phi)
);
pEqn.setReference(pRefCell, pRefValue);
if (corr == nCorr-1 && nonOrth == nNonOrthCorr)
{
pEqn.solve(mesh.solver(p.name() + "Final"));
}
else
{
pEqn.solve(mesh.solver(p.name()));
}
if (nonOrth == nNonOrthCorr)
{
phi -= pEqn.flux();
}
}
#include "continuityErrs.H"
U -= rUA*fvc::grad(p);
U.correctBoundaryConditions();
}
// Correct driving force for a constant mass flow rate
// Extract the velocity in the flow direction
dimensionedScalar magUbarStar =
(flowDirection & U)().weightedAverage(mesh.V());
// Calculate the pressure gradient increment needed to
// adjust the average flow-rate to the correct value
dimensionedScalar gragPplus =
(magUbar - magUbarStar)/rUA.weightedAverage(mesh.V());
U += flowDirection*rUA*gragPplus;
gradP += gragPplus;
Info<< "Uncorrected Ubar = " << magUbarStar.value() << tab
<< "pressure gradient = " << gradP.value() << endl;
runTime.write();
#include "writeGradP.H"
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
2010-08-26 14:22:03 +00:00
return 0;
}
// ************************************************************************* //