This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/basic/potentialFoam/potentialFoam.C

192 lines
5.2 KiB
C
Raw Normal View History

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Application
potentialFoam
Description
Simple potential flow solver which can be used to generate starting fields
for full Navier-Stokes codes.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::validOptions.insert("writep", "");
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
# include "readSIMPLEControls.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< nl << "Calculating potential flow" << endl;
adjustPhi(phi, U, p);
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
p.storePrevIter();
fvScalarMatrix pEqn
(
fvm::laplacian
(
dimensionedScalar
(
"1",
dimTime/p.dimensions()*dimensionSet(0, 2, -2, 0, 0),
1
),
p
)
==
fvc::div(phi)
);
pEqn.setReference(pRefCell, pRefValue);
pEqn.solve();
if (nonOrth == nNonOrthCorr)
{
phi -= pEqn.flux();
}
else
{
p.relax();
}
}
Info<< "continuity error = "
<< mag(fvc::div(phi))().weightedAverage(mesh.V()).value()
<< endl;
U = fvc::reconstruct(phi);
U.correctBoundaryConditions();
Info<< "Interpolated U error = "
<< (sqrt(sum(sqr((fvc::interpolate(U) & mesh.Sf()) - phi)))
/sum(mesh.magSf())).value()
<< endl;
// Calculate velocity magnitude
{
volScalarField magU = mag(U);
Info << "mag(U): max: " << gMax(magU.internalField())
<< " min: " << gMin(magU.internalField()) << endl;
}
// Force the write
U.write();
phi.write();
2010-08-26 14:22:03 +00:00
if (args.optionFound("writep"))
{
// Find reference patch
label refPatch = -1;
scalar maxMagU = 0;
// Go through all velocity patches and find the one that fixes
// velocity to the largest value
forAll (U.boundaryField(), patchI)
{
const fvPatchVectorField& Upatch = U.boundaryField()[patchI];
if (Upatch.fixesValue())
{
// Calculate mean velocity
scalar u = sum(mag(Upatch));
label patchSize = Upatch.size();
reduce(u, sumOp<scalar>());
reduce(patchSize, sumOp<label>());
if (patchSize > 0)
{
scalar curMag = u/patchSize;
if (curMag > maxMagU)
{
refPatch = patchI;
maxMagU = curMag;
}
}
}
}
if (refPatch > -1)
{
// Calculate reference pressure
const fvPatchVectorField& Upatch = U.boundaryField()[refPatch];
const fvPatchScalarField& pPatch = p.boundaryField()[refPatch];
scalar patchE = sum(mag(pPatch + 0.5*magSqr(Upatch)));
label patchSize = Upatch.size();
reduce(patchE, sumOp<scalar>());
reduce(patchSize, sumOp<label>());
scalar e = patchE/patchSize;
Info<< "Using reference patch " << refPatch
<< " with mag(U) = " << maxMagU
<< " p + 0.5*U^2 = " << e << endl;
p.internalField() = e - 0.5*magSqr(U.internalField());
p.correctBoundaryConditions();
}
else
{
Info<< "No reference patch found. Writing potential function"
<< endl;
}
p.write();
}
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
Info<< "End\n" << endl;
2010-08-26 14:22:03 +00:00
return 0;
}
// ************************************************************************* //