if (pressureImplicitPorosity)
{
U = trTU()&UEqn().H();
}
else
U = trAU()*UEqn().H();
UEqn.clear();
phi = fvc::interpolate(rho*U) & mesh.Sf();
bool closedVolume = adjustPhi(phi, U, p);
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
tmp<fvScalarMatrix> tpEqn;
tpEqn = (fvm::laplacian(rho*trTU(), p) == fvc::div(phi));
tpEqn = (fvm::laplacian(rho*trAU(), p) == fvc::div(phi));
tpEqn().setReference(pRefCell, pRefValue);
// retain the residual from the first iteration
if (nonOrth == 0)
eqnResidual = tpEqn().solve().initialResidual();
maxResidual = max(eqnResidual, maxResidual);
tpEqn().solve();
if (nonOrth == nNonOrthCorr)
phi -= tpEqn().flux();
#include "incompressible/continuityErrs.H"
// Explicitly relax pressure for momentum corrector
p.relax();
U -= trTU()&fvc::grad(p);
U -= trAU()*fvc::grad(p);
U.correctBoundaryConditions();
bound(p, pMin);
// For closed-volume cases adjust the pressure and density levels
// to obey overall mass continuity
if (closedVolume)
p += (initialMass - fvc::domainIntegrate(psi*p))
/fvc::domainIntegrate(psi);
rho = thermo.rho();
rho.relax();
Info<< "rho max/min : " << max(rho).value() << " " << min(rho).value() << endl;