This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/utilities/postProcessing/graphics/PVReaders/vtkPVFoam/vtkPVFoamMeshVolume.C

456 lines
13 KiB
C++
Raw Normal View History

#include "vtkPVFoam.H"
#include "vtkPVFoamReader.h"
// FOAM includes
#include "fvMesh.H"
#include "cellModeller.H"
#include "vtkPVFoamPoints.H"
#include "Swap.H"
// VTK includes
#include "vtkCellArray.h"
#include "vtkIdTypeArray.h"
#include "vtkUnstructuredGrid.h"
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
vtkUnstructuredGrid* Foam::vtkPVFoam::volumeVTKMesh
(
const fvMesh& mesh,
polyDecomp& decompInfo
)
{
const cellModel& tet = *(cellModeller::lookup("tet"));
const cellModel& pyr = *(cellModeller::lookup("pyr"));
const cellModel& prism = *(cellModeller::lookup("prism"));
const cellModel& wedge = *(cellModeller::lookup("wedge"));
const cellModel& tetWedge = *(cellModeller::lookup("tetWedge"));
const cellModel& hex = *(cellModeller::lookup("hex"));
vtkUnstructuredGrid* vtkmesh = vtkUnstructuredGrid::New();
if (debug)
{
Info<< "<beg> Foam::vtkPVFoam::volumeVTKMesh" << endl;
printMemory();
}
const cellShapeList& cellShapes = mesh.cellShapes();
// Number of additional points needed by the decomposition of polyhedra
label nAddPoints = 0;
// Number of additional cells generated by the decomposition of polyhedra
label nAddCells = 0;
// face owner is needed to determine the face orientation
const labelList& owner = mesh.faceOwner();
labelList& superCells = decompInfo.superCells();
labelList& addPointCellLabels = decompInfo.addPointCellLabels();
// Scan for cells which need to be decomposed and count additional points
// and cells
if (!reader_->GetUseVTKPolyhedron())
{
if (debug)
{
Info<< "... scanning for polyhedra" << endl;
}
forAll(cellShapes, celli)
{
const cellModel& model = cellShapes[celli].model();
if
(
model != hex
&& model != wedge
&& model != prism
&& model != pyr
&& model != tet
&& model != tetWedge
)
{
const cell& cFaces = mesh.cells()[celli];
forAll(cFaces, cFacei)
{
const face& f = mesh.faces()[cFaces[cFacei]];
label nQuads = 0;
label nTris = 0;
f.nTrianglesQuads(mesh.points(), nTris, nQuads);
nAddCells += nQuads + nTris;
}
nAddCells--;
nAddPoints++;
}
}
}
// Set size of additional point addressing array
// (from added point to original cell)
addPointCellLabels.setSize(nAddPoints);
// Set size of additional cells mapping array
// (from added cell to original cell)
if (debug)
{
Info<<" mesh nCells = " << mesh.nCells() << nl
<<" nPoints = " << mesh.nPoints() << nl
<<" nAddCells = " << nAddCells << nl
<<" nAddPoints = " << nAddPoints << endl;
}
superCells.setSize(mesh.nCells() + nAddCells);
if (debug)
{
Info<< "... converting points" << endl;
}
// Convert OpenFOAM mesh vertices to VTK
vtkPoints* vtkpoints = vtkPoints::New();
vtkpoints->Allocate(mesh.nPoints() + nAddPoints);
const Foam::pointField& points = mesh.points();
forAll(points, i)
{
vtkPVFoamInsertNextPoint(vtkpoints, points[i]);
}
if (debug)
{
Info<< "... converting cells" << endl;
}
vtkmesh->Allocate(mesh.nCells() + nAddCells);
// Set counters for additional points and additional cells
label addPointi = 0, addCelli = 0;
// Create storage for points - needed for mapping from OpenFOAM to VTK
// data types - max 'order' = hex = 8 points
vtkIdType nodeIds[8];
// face-stream for a polyhedral cell
// [numFace0Pts, id1, id2, id3, numFace1Pts, id1, id2, id3, ...]
DynamicList<vtkIdType> faceStream(256);
forAll(cellShapes, celli)
{
const cellShape& cellShape = cellShapes[celli];
const cellModel& cellModel = cellShape.model();
superCells[addCelli++] = celli;
if (cellModel == tet)
{
for (int j = 0; j < 4; j++)
{
nodeIds[j] = cellShape[j];
}
vtkmesh->InsertNextCell
(
VTK_TETRA,
4,
nodeIds
);
}
else if (cellModel == pyr)
{
for (int j = 0; j < 5; j++)
{
nodeIds[j] = cellShape[j];
}
vtkmesh->InsertNextCell
(
VTK_PYRAMID,
5,
nodeIds
);
}
else if (cellModel == prism)
{
// VTK has a different node order for VTK_WEDGE
// their triangles point outwards!
nodeIds[0] = cellShape[0];
nodeIds[1] = cellShape[2];
nodeIds[2] = cellShape[1];
nodeIds[3] = cellShape[3];
nodeIds[4] = cellShape[5];
nodeIds[5] = cellShape[4];
vtkmesh->InsertNextCell
(
VTK_WEDGE,
6,
nodeIds
);
}
else if (cellModel == tetWedge && !reader_->GetUseVTKPolyhedron())
{
// Treat as squeezed prism (VTK_WEDGE)
nodeIds[0] = cellShape[0];
nodeIds[1] = cellShape[2];
nodeIds[2] = cellShape[1];
nodeIds[3] = cellShape[3];
nodeIds[4] = cellShape[4];
nodeIds[5] = cellShape[3];
vtkmesh->InsertNextCell
(
VTK_WEDGE,
6,
nodeIds
);
}
else if (cellModel == wedge)
{
// Treat as squeezed hex
nodeIds[0] = cellShape[0];
nodeIds[1] = cellShape[1];
nodeIds[2] = cellShape[2];
nodeIds[3] = cellShape[2];
nodeIds[4] = cellShape[3];
nodeIds[5] = cellShape[4];
nodeIds[6] = cellShape[5];
nodeIds[7] = cellShape[6];
vtkmesh->InsertNextCell
(
VTK_HEXAHEDRON,
8,
nodeIds
);
}
else if (cellModel == hex)
{
for (int j = 0; j < 8; j++)
{
nodeIds[j] = cellShape[j];
}
vtkmesh->InsertNextCell
(
VTK_HEXAHEDRON,
8,
nodeIds
);
}
else if (reader_->GetUseVTKPolyhedron())
{
// Polyhedral cell - use VTK_POLYHEDRON
const labelList& cFaces = mesh.cells()[celli];
#ifdef HAS_VTK_POLYHEDRON
vtkIdType nFaces = cFaces.size();
vtkIdType nLabels = nFaces;
// count size for face stream
forAll(cFaces, cFacei)
{
const face& f = mesh.faces()[cFaces[cFacei]];
nLabels += f.size();
}
// build face-stream
// [numFace0Pts, id1, id2, id3, numFace1Pts, id1, id2, id3, ...]
// point Ids are global
faceStream.clear();
faceStream.reserve(nLabels + nFaces);
forAll(cFaces, cFacei)
{
const face& f = mesh.faces()[cFaces[cFacei]];
const bool isOwner = (owner[cFaces[cFacei]] == celli);
const label nFacePoints = f.size();
// number of labels for this face
faceStream.append(nFacePoints);
if (isOwner)
{
forAll(f, fp)
{
faceStream.append(f[fp]);
}
}
else
{
// fairly immaterial if we reverse the list
// or use face::reverseFace()
forAllReverse(f, fp)
{
faceStream.append(f[fp]);
}
}
}
vtkmesh->InsertNextCell(VTK_POLYHEDRON, nFaces, faceStream.data());
#else
// this is a horrible substitute
// but avoids crashes when there is no vtkPolyhedron support
// establish unique node ids used
HashSet<vtkIdType, Hash<label> > hashUniqId(2*256);
forAll(cFaces, cFacei)
{
const face& f = mesh.faces()[cFaces[cFacei]];
forAll(f, fp)
{
hashUniqId.insert(f[fp]);
}
}
// use face stream to store unique node ids:
faceStream = hashUniqId.sortedToc();
vtkmesh->InsertNextCell
(
VTK_CONVEX_POINT_SET,
vtkIdType(faceStream.size()),
faceStream.data()
);
#endif
}
else
{
// Polyhedral cell. Decompose into tets + prisms.
// Mapping from additional point to cell
addPointCellLabels[addPointi] = celli;
// The new vertex from the cell-centre
const label newVertexLabel = mesh.nPoints() + addPointi;
vtkPVFoamInsertNextPoint(vtkpoints, mesh.C()[celli]);
// Whether to insert cell in place of original or not.
bool substituteCell = true;
const labelList& cFaces = mesh.cells()[celli];
forAll(cFaces, cFacei)
{
const face& f = mesh.faces()[cFaces[cFacei]];
const bool isOwner = (owner[cFaces[cFacei]] == celli);
// Number of triangles and quads in decomposition
label nTris = 0;
label nQuads = 0;
f.nTrianglesQuads(mesh.points(), nTris, nQuads);
// Do actual decomposition into triFcs and quadFcs.
faceList triFcs(nTris);
faceList quadFcs(nQuads);
label trii = 0;
label quadi = 0;
f.trianglesQuads(mesh.points(), trii, quadi, triFcs, quadFcs);
forAll(quadFcs, quadI)
{
if (substituteCell)
{
substituteCell = false;
}
else
{
superCells[addCelli++] = celli;
}
const face& quad = quadFcs[quadI];
// Ensure we have the correct orientation for the
// base of the primitive cell shape.
// If the cell is face owner, the orientation needs to be
// flipped.
// At the moment, VTK doesn't actually seem to care if
// negative cells are defined, but we'll do it anyhow
// (for safety).
if (isOwner)
{
nodeIds[0] = quad[3];
nodeIds[1] = quad[2];
nodeIds[2] = quad[1];
nodeIds[3] = quad[0];
}
else
{
nodeIds[0] = quad[0];
nodeIds[1] = quad[1];
nodeIds[2] = quad[2];
nodeIds[3] = quad[3];
}
nodeIds[4] = newVertexLabel;
vtkmesh->InsertNextCell
(
VTK_PYRAMID,
5,
nodeIds
);
}
forAll(triFcs, triI)
{
if (substituteCell)
{
substituteCell = false;
}
else
{
superCells[addCelli++] = celli;
}
const face& tri = triFcs[triI];
// See note above about the orientation.
if (isOwner)
{
nodeIds[0] = tri[2];
nodeIds[1] = tri[1];
nodeIds[2] = tri[0];
}
else
{
nodeIds[0] = tri[0];
nodeIds[1] = tri[1];
nodeIds[2] = tri[2];
}
nodeIds[3] = newVertexLabel;
vtkmesh->InsertNextCell
(
VTK_TETRA,
4,
nodeIds
);
}
}
addPointi++;
}
}
vtkmesh->SetPoints(vtkpoints);
vtkpoints->Delete();
if (debug)
{
Info<< "<end> Foam::vtkPVFoam::volumeVTKMesh" << endl;
printMemory();
}
return vtkmesh;
}
// ************************************************************************* //