{
volScalarField rAU = 1.0/UEqn.A();
surfaceScalarField rAUf = fvc::interpolate(rAU);
U = rAU*UEqn.H();
surfaceScalarField phiU("phiU", (fvc::interpolate(U) & mesh.Sf()));
if (pd.needReference())
adjustPhi(phi, U, pd);
}
phi = phiU +
(
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
- ghf*fvc::snGrad(rho)
)*rAUf*mesh.magSf();
for(int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
fvScalarMatrix pdEqn
fvm::laplacian(rAUf, pd) == fvc::div(phi)
);
pdEqn.setReference(pdRefCell, pdRefValue);
if (corr == nCorr-1 && nonOrth == nNonOrthCorr)
pdEqn.solve(mesh.solver(pd.name() + "Final"));
else
pdEqn.solve(mesh.solver(pd.name()));
if (nonOrth == nNonOrthCorr)
phi -= pdEqn.flux();
U += rAU*fvc::reconstruct((phi - phiU)/rAUf);
U.correctBoundaryConditions();
#include "continuityErrs.H"
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, U);